Die Studie zur Ableitung des mittel- bis langfristigen Normungs- und Standardisierungsbedarfs im Bereich Elektromobilität auf Basis der sozioökonomischen Entwicklung wurde von uns im Auftrag des DIN erstellt. Sie ist Bestandteil des vom Bundesministerium für Wirtschaft und Technologie an das DIN vergebenen Auftrags zur „Normung und Standardisierung im Bereich Elektromobilität“.

Elektromobilität – Normen bringen die Zukunft in Fahrt
Elektromobilität – Normen bringen die Zukunft in Fahrt

Die Studie zur Ableitung des mittel- bis langfristigen Normungs- und Standardisierungsbedarfs im Bereich Elektromobilität auf Basis der soziökonomischen Entwicklung wurde von uns im Auftrag des DIN erstellt. Sie ist Bestandteil des vom Bundesministerium für Wirtschaft und Technologie an das DIN vergebenen Auftrags zur „Normung und Standardisierung im Bereich Elektromobilität“.
Elektromobilität – Normen bringen die Zukunft in Fahrt
Inhaltsverzeichnis

Abbildungsverzeichnis .. 7
Tabellenverzeichnis .. 10
Abkürzungsverzeichnis ... 12

A. Ausgangssituation ... 14
B. Auftragsdurchführung ... 18
C. Akzeptanz und Markt durchdringung alternativer Antriebstechnologien 22

D. Ganzheitliche Analyse der sozioökonomischen Bereiche unter Berücksichtigung der relevanten Sekundärliteratur .. 28

I. Nutzer ... 30
 1.1 Grundlagen des Verkehrsverhaltens .. 30
 1.2 Zahlungsbereitschaft ... 46
 1.3 Anforderungen und Erwartungen der Nutzer an Elektromobilität 52
 1.4 Integration der Elektromobilität in bestehende Wegeketten 56

II. Wirtschaft .. 63
 2.1 Kostenentwicklung ... 63
 2.2 Wirtschaftliche Geschäftsmodelle ... 72
 2.3 Strategische Partnerschaften ... 84

III. Recht .. 86
 3.1 Verkehrsräumgestaltung .. 86
 3.2 Fahrzeugsicherheit .. 88
 3.3 Bevorrechtigung .. 89
 3.4 Umweltrecht .. 92
 3.5 Datenschutz .. 96
 3.6 Eichrecht ... 97

IV. Politik .. 99
 4.1 Zuständigkeit der Ministerien .. 99
 4.2 Politische Motivation und Fördermaßnahmen im internationalen Kontext 100

V. Übertragung der sozioökonomischen Herausforderungen auf die technologischen Entwicklungen unter Berücksichtigung der relevanten Sekundärliteratur ... 109
 5.1 Einleitung ... 109
 5.2 Energiespeicher .. 109
 5.3 Ladetechnik .. 113
 5.4 Abrechnungskonzepte ... 115
 5.5 Antriebsstrang ... 116

VI. Überführung der Ergebnisse in eine SWOT-Analyse ... 117
Elektromobilität – Normen bringen die Zukunft in Fahrt

Inhaltsverzeichnis

E. Zielgruppen .. 118

F. Erarbeitung von mittel- bis langfristigen Szenarien ... 124
 I. Einleitung ... 126
 II. Kritische Faktoren ... 127
 2.1 Kosten, Reichweite und Ladeinfrastruktur .. 127
 2.2 Umwelt .. 131
 2.3 Sicherheit und Zuverlässigkeit .. 133
 2.4 Komfort .. 133
 III. Darstellung zukünftiger Entwicklungen ... 135
 3.1 Basisszenario .. 135
 3.2 Negativszenario .. 138

G. Ableitung des Normungs- und Standardisierungsbedarfs 140
 I. Anzuwendender Filter .. 142
 II. Kritische Faktoren .. 142
 III. Anwendung von Use Cases ... 144

Literaturverzeichnis ... 158

Impressum ... 166

Ihre Ansprechpartner ... 167
<table>
<thead>
<tr>
<th>Abb.</th>
<th>Abbildungstitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sozioökonomische Bereiche der Elektromobilität</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Technologische Faktoren normungsrelevanter Themen im Bereich Elektromobilität</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Wachstum der Anzahl an Pkw nach Kraftstoffarten</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>Neuzulassungen nach Antriebsarten im Trend-Szenario</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Neuzulassungen nach Antriebsarten im Alternativ-Szenario</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>Kosteneffizienz und Praktikabilität unterschiedlicher Antriebstechnologien</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>Jährlicher globaler Verkauf von batteriebetrieben und Plug-In-Hybrid-Fahrzeugen</td>
<td>27</td>
</tr>
<tr>
<td>8</td>
<td>Pkw-Bestand 2009 in ausgewählten Ländern</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>Pkw-Bestand je 1000 Einwohner von ausgewählten Ländern nach Basisdaten Personenkraftwagen</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>Erteilte Fahrerlaubnisse 2007 bis 2010 nach Geschlecht in der Altersklasse der 17- bis 24-Jährigen</td>
<td>32</td>
</tr>
<tr>
<td>12</td>
<td>Modal Split Deutschland von 2007</td>
<td>33</td>
</tr>
<tr>
<td>13</td>
<td>Anteile des MIV am motorisierten Personenverkehr in Deutschland von 2000 bis 2008</td>
<td>34</td>
</tr>
<tr>
<td>14</td>
<td>Beispiel einer Wegekette vom Wohnort zum Arbeitsplatz</td>
<td>35</td>
</tr>
<tr>
<td>15</td>
<td>Entfernungen der Reisen am Beispiel der Frankfurter Bürger (n = 2.179)</td>
<td>37</td>
</tr>
<tr>
<td>16</td>
<td>Entfernungen der Reisen am Beispiel der Kasseler Bürger (n = 238)</td>
<td>37</td>
</tr>
<tr>
<td>17</td>
<td>Zeitaufwand für den Weg zur Arbeits- bzw. Ausbildungsstätte in 2004 (Deutschland)</td>
<td>38</td>
</tr>
<tr>
<td>18</td>
<td>Durchschnittliche Fahrzeit pro Person und Tag in ausgewählten Ländern Europas</td>
<td>39</td>
</tr>
<tr>
<td>19</td>
<td>Modal Split 2008 und Prognose 2025 in Deutschland</td>
<td>40</td>
</tr>
<tr>
<td>20</td>
<td>Entwicklung des Modal Split im chinesischen Stadtverkehr (nach Wegen)</td>
<td>41</td>
</tr>
<tr>
<td>21</td>
<td>Modal Split im chinesischen Überlandverkehr (nach Personenkilometern)</td>
<td>42</td>
</tr>
<tr>
<td>22</td>
<td>Nutzergruppen und Wegstrecken im privaten Verkehr – theoretisches Modell</td>
<td>43</td>
</tr>
<tr>
<td>23</td>
<td>Anzahl der Neuzulassungen 2005 bis 2010</td>
<td>46</td>
</tr>
<tr>
<td>24</td>
<td>Durchschnittliche Pkw-Anschaffungspreise von 2000 bis 2010</td>
<td>47</td>
</tr>
<tr>
<td>25</td>
<td>Preissegmente bei Gebrauchtwagen (Pkw) 2010</td>
<td>47</td>
</tr>
<tr>
<td>26</td>
<td>Preissegmente bei Neuwagen (Pkw) 2010</td>
<td>48</td>
</tr>
<tr>
<td>27</td>
<td>Anteile Neuwagen nach Preissegmenten</td>
<td>48</td>
</tr>
<tr>
<td>28</td>
<td>Einkommensstruktur im Jahr 2010</td>
<td>49</td>
</tr>
<tr>
<td>29</td>
<td>Bedeutung eines niedrigen CO₂-Ausstoßes beim Neuwagenkauf (n = 351)</td>
<td>52</td>
</tr>
</tbody>
</table>
Abb. 30 Abhängigkeitsdreieck Mobilität-Kosten-Umwelt ..52
Abb. 31 Geforderte Mindestreichweite von Elektroautos (n = 278)53
Abb. 32 Geforderte Reichweite von Elektroautos (n = 100)53
Abb. 33 Gewünschte Reichweite von Elektrofahrzeugen gemäß einer Nutzer-
 befragung in der Modellregion Rhein-Main ...54
Abb. 34 Nutzererfahrungen zur Reichweite ...54
Abb. 35 Anteil der neu zugelassenen Elektro-Pkw an den
 Pkw-Zulassungen 2009 ...57
Abb. 36 Anzahl der im Jahr 2009 neu zugelassenen Elektro-Pkw58
Abb. 37 Prognostizierter Anteil der Elektro-Pkw am Gesamtbestand 201459
Abb. 38 Nutzerbefragung zu den Hinderungsgründen
 beim Kauf eines Elektrofahrzeugs ..60
Abb. 39 Der Wissensstand der Befragten zur Elektromobilität61
Abb. 40 Produktionskosten je Antriebsstrang ..63
Abb. 41 Annahmen zur Entwicklung der Herstellungskosten
 von Fahrzeugen nach Antriebstechnologie65
Abb. 42 Vergleich der TCO eines Verbrennungs- und
 eines batteriebetriebenen Fahrzeugs ..65
Abb. 43 Entwicklung der Herstellungskosten eines Elektrofahrzeugs67
Abb. 44 Prognose zur Entwicklung der Batteriepreise68
Abb. 45 Produktion, Reserven und potenzieller Bedarf an Metallen70
Abb. 46 Mögliche Gründe einen Mehrpreis für Elektroautos zu akzeptieren72
Abb. 47 Bereitschaft der Nutzer einen Mehrpreis für ein
 Elektroauto zu zahlen ...72
Abb. 48 Vehicle to Grid ...81
Abb. 49 Schematisches Beispiel für ein Smart Home82
Abb. 50 Verteilung des ruhenden Verkehrs in Frankfurt am Main (n = 1.691) ..89
Abb. 51 Verteilung des ruhenden Verkehrs in Kassel (n = 1.006)89
Abb. 52 CO₂-Emissionen von Pkw ...95
Abb. 53 Vereinfachte Übersicht über relevante eichrechtliche Vorschriften
 im Bereich Elektromobilität ..97
Abb. 54 Einstellung der Nutzer zur Subventionierung von Elektroautos100
Abb. 55 „Leuchttürme Elektromobilität“ ..102
Abb. 56 Politische Förderung der Elektromobilität in China im Zeitablauf106
Abb. 57 Technische Themen ...109
Abb. 58 Darstellung unterschiedlicher Batterietechnologien mit Zeitangaben 111
Abb. 59 Key-Performance für BEV-Stadtfahrzeug112
Abb. 60 Systemansätze zum Laden ...114
Abb. 61 SWOT-Analyse...117
Abb. 62 Krisi/E Faktoren der Elektromobilität ...126
Abb. 63 Entwicklung der Strom- und Benzinpreise in Deutschland (indexiert) 129
Abb. 64 Bis zur Amortisation zu fahrende Kilometer pro Tag130
Abb. 65 Bis zur Amortisation zu fahrende Kilometer pro Wochentag130
Abb. 66 Vorteilhaftigkeit von Finanzierungsoptionen
 im Vergleich zum Verbrennungsfahrzeug (km/Tag)131
Abb. 67 CO₂-Emissionen (g/km) ...132
Abb. 68 Entwicklung des Strommix in Deutschland.................................132
Abb. 69 Komfort bei Elektroautos – Chancen und Risiken.......................134
Abb. 70 Entwicklung der Produktionszahlen von reinen Elektroautos (global)135
Abb. 71 Szenario 1 – Basisszenario ..137
Abb. 72 Szenario 2 – Negativszenario ..139
Abb. 73 Use-Case-Vorbereitung von Batterien zur Zweitnutzung147
Abb. 74 Aktivität: Übergabe an den Händler ..148
Abb. 75 Aktivität: Batterietest ...148
Abb. 76 Aktivität: Weitervertrieb ...149
Abb. 77 Aktivität: Übergabe an den Zweitnutzer149
Abb. 78 Use-Case-Hausenergiesysteme ..150
Abb. 79 Use-Case-Authentifizierung ..152
Abb. 80 Use-Case-Wartung mittels Ferndiagnose154
Abb. 81 Use-Case-Eigendiagnose Fahrzeug und Ladestation......................155
Abb. 82 Use-Case-Rettungskette: Unfall mit Personenschaden...................156
<table>
<thead>
<tr>
<th>Tabellenverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tab. 1</td>
</tr>
<tr>
<td>Tab. 2</td>
</tr>
<tr>
<td>Tab. 3</td>
</tr>
<tr>
<td>Tab. 4</td>
</tr>
<tr>
<td>Tab. 5</td>
</tr>
<tr>
<td>Tab. 6</td>
</tr>
<tr>
<td>Tab. 7</td>
</tr>
<tr>
<td>Tab. 8</td>
</tr>
<tr>
<td>Tab. 9</td>
</tr>
<tr>
<td>Tab. 10</td>
</tr>
<tr>
<td>Tab. 11</td>
</tr>
<tr>
<td>Tab. 12</td>
</tr>
<tr>
<td>Tab. 13</td>
</tr>
<tr>
<td>Tab. 14</td>
</tr>
<tr>
<td>Tab. 15</td>
</tr>
<tr>
<td>Tab. 16</td>
</tr>
<tr>
<td>Tab. 17</td>
</tr>
<tr>
<td>Tab. 18</td>
</tr>
<tr>
<td>Tab. 19</td>
</tr>
<tr>
<td>Tab. 20</td>
</tr>
<tr>
<td>Tab. 21</td>
</tr>
<tr>
<td>Tab. 22</td>
</tr>
<tr>
<td>Tab. 23</td>
</tr>
<tr>
<td>Tab. 24</td>
</tr>
<tr>
<td>Tab. 25</td>
</tr>
<tr>
<td>Tab. 26</td>
</tr>
<tr>
<td>Tab. 27</td>
</tr>
<tr>
<td>Tab. 28</td>
</tr>
<tr>
<td>Tab. 29</td>
</tr>
</tbody>
</table>
Tab. 30 Datenschutzrechtliche Aspekte nach dem Bundesdatenschutzgesetz und mögliche Komplikationen bei der Nutzung von Ladeinfrastruktur ...96
Tab. 31 Beispiele zu Maßnahmen der Absatzzförderung in ausgewählten Ländern ...101
Tab. 32 Bonus/Malus System in Frankreich ..103
Tab. 33 Entwicklung der Anzahl an Ladestationen und der korrespondierenden Kosten in den 25 größten Agglomerationen Frankreichs ...103
Tab. 34 Förderung der Elektromobilität in Großbritannien104
Tab. 35 Förderung der Elektromobilität in den USA105
Tab. 36 „Next Generation Vehicle Strategy“, Japan107
Tab. 37 Steuervorteile emissionsärmer Fahrzeuge in Japan108
Tab. 38 Möglichkeiten elektrische Energie zu speichern und Art der gespeicherten Energie ...109
Tab. 39 Zielgruppendefinition Elektromobilität nach McKinsey120
Tab. 40 Potenzielle Nutzer und Hypothesen (Fraunhofer ISI)121
Tab. 41 Merkmale von unterschiedlichen Nutzergruppen122
Tab. 42 Reichweite von Elektroautos nach Segmenten im Jahr 2010126
Tab. 43 Verteilung der Nutzer nach der durchschnittlichen Kilometerleistung ...127
Tab. 44 Kostenvergleich Tanken/Laden (zu Hause vs. öffentlich)128
Tab. 45 Potenzial an Nutzern in unterschiedlichen Szenarien131
Tab. 46 Sicherheitsrelevante Themen der Elektromobilität133
Tab. 47 Kritische Faktoren und Normen ..143
Tab. 48 Relevante Normarten aus DIN 820 ..144
Tab. 49 Auswahl der Use Cases zur Ermittlung des Normungsbedarfs145
Tab. 50 Relevanz von Normarten bei ausgewählten Use Cases146
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher oder Englischer Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Alternating Current, Wechselstrom</td>
</tr>
<tr>
<td>AG</td>
<td>Aktiengesellschaft</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>BEV</td>
<td>Battery Electric Vehicle</td>
</tr>
<tr>
<td>BMBF</td>
<td>Bundesministerium für Bildung und Forschung</td>
</tr>
<tr>
<td>BMS</td>
<td>Batteriemanagementsystem</td>
</tr>
<tr>
<td>BMU</td>
<td>Bundesministerium für Umwelt</td>
</tr>
<tr>
<td>BMVBS</td>
<td>Bundesministerium für Verkehr, Bau und Stadtentwicklung</td>
</tr>
<tr>
<td>BMWi</td>
<td>Bundesministerium für Wirtschaft und Technologie</td>
</tr>
<tr>
<td>CEN</td>
<td>Comité Européen de Normalisation, Europäisches Komitee für Normung</td>
</tr>
<tr>
<td>CENELEC</td>
<td>Comité Européen de Normalisation Electrotechnique, Europäisches Komitee für elektrotechnische Normung</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current, Gleichstrom</td>
</tr>
<tr>
<td>DOD</td>
<td>Depth of Discharge, Entladungsgrad</td>
</tr>
<tr>
<td>EMV</td>
<td>Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>EVSP</td>
<td>Electric Vehicles Standards Panel</td>
</tr>
<tr>
<td>FCEV</td>
<td>Fuel Cell Electric Vehicle</td>
</tr>
<tr>
<td>FH</td>
<td>Fachhochschule</td>
</tr>
<tr>
<td>FHEV</td>
<td>Full Hybrid Electric Vehicle</td>
</tr>
<tr>
<td>GD</td>
<td>Generaldirektoren</td>
</tr>
<tr>
<td>HCCI</td>
<td>Homogeneous Charge Compression Ignition</td>
</tr>
<tr>
<td>ICE</td>
<td>Internal Combustion Engine</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IKT</td>
<td>Informations- und Kommunikationstechnologie</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>Kfz</td>
<td>Kraftfahrzeug</td>
</tr>
<tr>
<td>kWh</td>
<td>Kilowattstunde</td>
</tr>
<tr>
<td>k. N. i.</td>
<td>kein Normungsbedarf identifiziert</td>
</tr>
<tr>
<td>Li</td>
<td>Lithium</td>
</tr>
<tr>
<td>Li-S</td>
<td>Lithium-Schwefel</td>
</tr>
<tr>
<td>METI</td>
<td>Japanisches Ministerium für Wirtschaft, Handel und Industrie</td>
</tr>
<tr>
<td>MiD</td>
<td>Mobilität in Deutschland</td>
</tr>
<tr>
<td>MIV</td>
<td>Motorisierter Individualverkehr</td>
</tr>
<tr>
<td>NPE</td>
<td>Nationale Plattform Elektromobilität</td>
</tr>
<tr>
<td>ÖPNV</td>
<td>Öffentlicher Personennahverkehr</td>
</tr>
<tr>
<td>ÖV</td>
<td>Öffentlicher Verkehr</td>
</tr>
<tr>
<td>p. a.</td>
<td>pro Jahr (per anno)</td>
</tr>
<tr>
<td>PHEV</td>
<td>Plug-in Hybrid Electric Vehicle</td>
</tr>
<tr>
<td>PLC</td>
<td>Powerline Communication</td>
</tr>
<tr>
<td>PPP</td>
<td>Public Private Partnership</td>
</tr>
<tr>
<td>REEV</td>
<td>Range Extender Electric Vehicle</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio-frequency Identification</td>
</tr>
<tr>
<td>SOC</td>
<td>State of Charge</td>
</tr>
<tr>
<td>SOH</td>
<td>State of Health</td>
</tr>
<tr>
<td>SrV</td>
<td>System repräsentativer Verkehrserhebungen</td>
</tr>
<tr>
<td>SSL</td>
<td>Secure Socket Layer</td>
</tr>
<tr>
<td>StVO</td>
<td>Straßenverkehrsordnung</td>
</tr>
<tr>
<td>SUV</td>
<td>Sport Utility Vehicle</td>
</tr>
<tr>
<td>TCO</td>
<td>Total Cost of Ownership</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>TÜV</td>
<td>Technischer Überwachungs-Verein</td>
</tr>
</tbody>
</table>
A Ausgangssituation

Das DIN Deutsches Institut für Normung e. V. (DIN), Berlin, wurde im Jahr 2010 beauftragt, eine koordinierende Funktion hinsichtlich der Normungsaktivitäten in Deutschland zu übernehmen. Unter anderem gehören zu seinem Aufgabenbereich die Erarbeitung der Normungs-Roadmap Elektromobilität zu begleiten sowie die Ermittlung des mittel- bis langfristigen Normungs- und Standardisierungsbedarfs im Bereich Elektromobilität. Diese Arbeiten zum mittel- bis langfristigen Normungsbedarf sollen zum einen auf den Ergebnissen der bereits veröffentlichten deutschen Normungs-Roadmap Elektromobilität aufbauen zum anderen aber auch konkret Themenbereiche beinhalten, die in den bisherigen Normungs- und Standardisierungsarbeiten noch nicht oder nicht vollständig berücksichtigt wurden.

1 Die Verwendung der Begriffe Nutzer, Käufer, Pendler etc. schließt die weibliche Form mit ein.
2 DIN Deutsches Institut für Normung e. V. (15.11.2004).
3 DIN Deutsches Institut für Normung e. V. (26.11.2009).
4 NPE (2010).
5 DIN Deutsches Institut für Normung e. V. (2011).
Während auf der technologischen Seite viele Themen bereits abgedeckt sind, werden gerade im sozioökonomischen Bereich Lücken identifiziert. Im Zusammenhang mit der Notwendigkeit des Aufbaus einer weltweit einheitlichen Ladeinfrastruktur betont die Normungs-Roadmap: „Die Interessen der Nutzer müssen Vorrang haben vor den Interessen einzelner Unternehmen.“

Die sozioökonomische Komponente ist für die Entwicklung der Elektromobilität von zunehmender Bedeutung. So werden beispielsweise im Rahmen der Modellregion Rhein-Main umfangreiche Untersuchungen zum Mobilitätsverhalten der Nutzer und zur Nutzerakzeptanz der Elektromobilität durchgeführt, um die Mobilitätsanforderungen und die Wünsche der bisherigen Nutzer bei der Fortentwicklung der Elektromobilität zu berücksichtigen. Ziel dieser Untersuchungen ist die nachhaltige Implementierung von Elektromobilität. Diese kann nur gewährleistet werden, wenn die Erwartungen der Nutzer an die Fahrzeuge und die Ladeinfrastruktur erfüllt werden und sie die Elektromobilität sinnvoll in ihre alltägliche Mobilität integrieren können.

Weitere wichtige Aspekte sind die politische Entwicklung und damit einhergehend die rechtlichen Grundlagen für die Förderung der Elektromobilität bzw. die Anpassung der gesetzlichen Bestimmungen für den öffentlichen Straßenraum zugunsten der notwendigen Ladeinfrastruktur und bspw. einer möglichen Bevorrechtigung von Elektrofahrzeugen in bestimmten Stadtquartieren oder beim Parken.

All diese Aspekte sind bei der Weiterentwicklung der Elektromobilität und somit auch bei der zukünftigen Normung mit einzubeziehen. Vor diesem Hintergrund hat das DIN die PricewaterhouseCoopers AG Wirtschaftsprüfungsgesellschaft (PwC), Frankfurt am Main, beauftragt, eine „Studie zur Ableitung des mittel- bis langfristigen Normungs- und Standardisierungsbedarfs im Bereich Elektromobilität auf Basis der sozioökonomischen Entwicklung“ zu erstellen.

6 (NPE, 2010).
B Auftragsdurchführung
PwC hat den Auftrag gemeinsam mit der Fachhochschule Frankfurt am Main – University of Applied Sciences, Frankfurt am Main (FH FFM), und dem Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit (Fraunhofer LBF), Darmstadt, durchgeführt. Die für den Auftrag zu erbringenden Leistungen wurden bereits vorab vom DIN Deutsches Institut für Normung e.V. konkret definiert:

Unter Berücksichtigung der relevanten Sekundärliteratur wird zunächst eine ganzheitliche Analyse der sozioökonomischen Bereiche vorgenommen, die in einem zweiten Schritt auf die für die Normung und Standardisierung relevanten Themenstellungen fokussiert wurde. Dies sind zum einen politische, rechtliche und wirtschaftliche Rahmenbedingungen und insbesondere Nutzererwartungen an die Elektrofahrzeuge sowie die Infrastruktur. Daneben spielen auch verschiedene Nutzungsvarianten, Kundengruppen und Geschäftsmodelle eine wichtige Rolle.

Abb. 1 Sozioökonomische Bereiche der Elektromobilität.

Neben den sozioökonomischen Bereichen werden relevante technologische Faktoren dargestellt. Es scheinen insbesondere die Themen Energiespeicher, Ladetechnik, Abrechnung/Kommunikation, Rohstoffe/Materialien und Antriebsstrang für die Themenstellung relevant zu sein.

Im Anschluss an die Identifikation der Entwicklungsfelder (Dienstleistungen, Technik, Technik und DL zugleich, Schnittstellen, Änderung/Einfluss auf Rahmenbedingungen etc.) müssen diese, wo notwendig, weiter aufgespiltet werden, um schließlich eine sinnvolle Analyse/Bewertung des Normungsbedarfs durchführen zu können. Schließlich sollen alle relevanten Aspekte herausgefiltert werden, bei denen Normung und Standardisierung berücksichtigt werden müssen, um eine Umsetzung/Entwicklung der einzelnen Cluster des Gesamtsystems zu gewährleisten.

Sollte festgestellt werden, dass Aspekte bereits in der Normungs-Roadmap enthalten sind, sollen diese für die weitere Untersuchung ausgeklammert werden (es sei denn, es ergeben sich abweichende Erkenntnisse).

Im einzelnen ergibt sich folgende Vorgehensweise:

- Identifikation eines Themenfeldes/-bereichs (Cluster des Gesamtsystems).
- Das Themenfeld wird anhand der folgenden Filterkriterien bewertet:
 i) Das Themenfeld ist für die Elektromobilität grundsätzlich relevant
 ii) Das Themenfeld wird voraussichtlich im Zeitraum 2015 bis 2025 für die Elektromobilität relevant.
 iii) Das Themenfeld wird nicht bzw. nicht umfassend in der Normungs-Roadmap behandelt.
- Im weiteren Verlauf werden die Themenfelder bearbeitet, die alle genannten Filterkriterien erfüllen.1

1 Smart Grid relevante Themen, die nicht elektromobilitätsspezifisch sind, stehen nicht im Fokus dieser Arbeit.
C Akzeptanz und Marktdurchdringung alternativer Antriebstechnologien

Förderung der Bundesregierung\(^7\) und die Steigerung des Markanteils der Hybridautos\(^8\) darauf hin, dass die Bedeutung von elektrisch betriebenen Fahrzeugen deutlich zunehmen wird.\(^9\) Da Hybridkonzepte, die keiner relevanten Reichweitenproblematik unterliegen, gemäß verschiedener

Tab. 1 Pkw-Bestand nach Kraftstoffarten zum 1. Januar 2011.

<table>
<thead>
<tr>
<th>Kraftstoffarten</th>
<th>Pkw-Bestand 01.01.2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzin</td>
<td>30.487.578</td>
</tr>
<tr>
<td>Diesel</td>
<td>11.266.644</td>
</tr>
<tr>
<td>Flüssiggas</td>
<td>418.659</td>
</tr>
<tr>
<td>Erdgas</td>
<td>71.519</td>
</tr>
<tr>
<td>Elektro</td>
<td>2.307</td>
</tr>
<tr>
<td>Hybrid</td>
<td>37.256</td>
</tr>
</tbody>
</table>

Abb. 3 Wachstum der Anzahl an Pkw nach Kraftstoffarten.

![Graph showing the growth of car numbers by fuel type from 2006 to 2010](image)

\(^7\) Die Bundesregierung (2011).
\(^8\) Kraftfahrt-Bundesamt (2011).
\(^10\) PwC, Fraunhofer IAO (2010), S. 36.
Elektromobilität – Normen bringen die Zukunft in Fahrt

| Tab. 2 Darstellung ausgewählter Antriebskonzepte klassifiziert nach dem Antriebsmotor. |
|---|---|
| Verbrennungsmotor | Verbrennungs- und Elektromotor |
| Ottomotor | Mildhybrid |
| Dieselmotor | Parallelhybrid (Vollhybrid) |
| HCCI | Batteriefahrzeug |

Abb. 4 Neuzulassungen nach Antriebsarten im Trend-Szenario.

Quelle: Shell (2009).
Bundesregierung innerhalb eines Alternativszenarios mit ein, steigt im Jahr 2030 der Anteil der Hybride auf 50 Prozent und der reiner Elektrofahrzeuge auf 10 Prozent.11

Die Ergebnisse der Studie „Nielsen Energy Survey“ deuten ebenso darauf hin, dass PHEV aufgrund der Möglichkeit große Distanzen ohne „Tankstopp“ zurückzulegen, eine große Bedeutung zukommt. So gibt mehr als die Hälfte der befragten US-Amerikaner an, sich vorstellen zu können, bei vergleichbarer Reichweite ein (teil) elektrisch betriebenes Fahrzeug zu fahren. An rein elektrisch betriebenen Fahrzeugen mit derentsprechend geringer Reichweite sind hingegen nur 8 Prozent der Befragten interessiert.13

PwC hat verschiedene Personen befragt, welche alternativen Antriebstechnologien sie nach den Maßstäben Kosteneffizienz und Praktikabilität zurzeit für besonders geeignet halten. Demnach plädiert die Mehrzahl der Nutzer für Hybridfahrzeuge und PHEV. Nur etwa 8 Prozent halten rein batteriebetriebene Fahrzeuge für besonders geeignet.14

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{neuzulassungen.png}
\caption{Neuzulassungen nach Antriebsarten im Alternativszenario.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{kosteneffizienz.png}
\caption{Kosteneffizienz und Praktikabilität unterschiedlicher Antriebstechnologien.}
\end{figure}

\begin{itemize}
\item 11 Shell (2009), S. 32,33.
\item 12 Kortlüke & Pieprzyk (2010), S. 10,11.
\item 13 DailyGreen (2011).
\item 14 PwC (2011).
\end{itemize}

Nach einer Untersuchung der IEA wird bis zum Jahr 2030 hauptsächlich PHEV eine wesentliche Bedeutung zukommen. Erst im Jahr 2050 wird der Verkauf von batteriebetriebenen Fahrzeugen den Verkauf von PHEV übersteigen.¹⁶

Im Rahmen einer aktuellen Stellungnahme unterschiedlicher Unternehmen zu einem aktuellen Weissbuch der Europäischen Kommission¹⁷ wird die Notwendigkeit eines parallelen Aufbaus einer Stromlade- und einer Wasserstofftankstelleninfrastruktur beschrieben.¹⁸ Um den Aufbau einer Wasserstofftankstelleninfrastruktur in Deutschland zu untersuchen bzw. zu prüfen, haben sich die Akteure Linde, Daimler, EnBW, NOW, OMV, Shell, Total und Vattenfall in der Initiative „H2 Mobility“ zusammenge schlossen.¹⁹

Abb. 7 Jährlicher globaler Verkauf von batteriebetriebenen und Plug-In-Hybrid-Fahrzeugen.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Batteriebetriebene Fahrzeuge</th>
<th>Plug-In-Hybrid-Fahrzeuge</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2020</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2030</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>2040</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>2050</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

¹⁵ Kosowski (2011).
¹⁶ IEA (2009), S. 15.
¹⁹ Linde AG (2009).
²⁰ Bain & Company (2010).
Ganzheitliche Analyse der sozioökonomischen Bereiche unter Berücksichtigung der relevanten Sekundärliteratur
Elektromobilität – Normen bringen die Zukunft in Fahrt
I. Nutzer

Seit dem Beginn der Massenproduktion und der damit einhergehenden Senkung der Anschaffungskosten stellt der Pkw das wichtigste Transportmittel im Individualverkehr dar. In den Industrieländern ist der motorisierte Individualverkehr (MIV), der sich zum größten Teil aus Pkw-Fahrten zusammensetzt, die Hauptkomponente des Modal Split (Verkehrsmittelverteilung). In den Schwellen- und Entwicklungsländern steigen die Anteile am Modal Split kontinuierlich an. In Deutschland wurden im Jahr 2008 etwa 79,6 Prozent der Personenkilometer im motorisierten Personenverkehr zurückgelegt.21

1.1 Grundlagen des Verkehrsverhaltens

21 BMVBS (2009), S. 223.
D Ganzheitliche Analyse der sozioökonomischen Bereiche unter Berücksichtigung der relevanten Sekundärliteratur

Fahrzeugbestand und Führerscheinerwerb

Abb. 8 Pkw-Bestand 2009 in ausgewählten Ländern.

Quelle: Korea Automobile Manufactures Association (2010).

Abb. 9 Pkw-Bestand je 1000 Einwohner von ausgewählten Ländern nach Basisdaten Personenwagen.

\(^{23}\) BMVBS (2009), S. 223.
Verkehrsmittelwahl

Demnach werden 75,4 Prozent der Kilometer im motorisierten Individualverkehr zurückgelegt. Das verbleibende Viertel teilt sich auf den öffentlichen Straßenpersonenverkehr (6,9 Prozent), den Eisenbahnverkehr (6,8 Prozent), den Luftverkehr (5,0 Prozent) sowie auf den nicht motorisierten Fuß- und Radverkehr (3,3 bzw. 2,6 Prozent) auf. Hier wird deutlich, dass die anderen Verkehre nur eine untergeordnete Rolle spielen. Es ist jedoch zu berücksichtigen, dass die regionale Verkehrsmittelwahl anders ausfallen kann. Höhere Anteile des öffentlichen Verkehrs oder auch des Radverkehrs können in Ballungsräumen und in Großstädten auftreten, während sie auf dem Land, durch ein geringes ÖV-Angebot und längere Wegstrecken, eher unter dem bundesweiten Durchschnitt liegen dürften. Dennoch besitzt der motorisierte Verkehr auch dort einen hohen Anteil.

Fußverkehr 3,3 %
Luftverkehr 5,0 %
Öffentlicher Straßenpersonenverkehr 6,9 %
Eisenbahnverkehr 6,8 %
Radverkehr 2,6 %
Motorisierter Individualverkehr 75,4 %

Quelle: BMVBS (2009), S. 223
In geringem Maße ist der Anteil des MIV am motorisierten Personenverkehr in Deutschland im Zeitraum 2000 bis 2008 zurückgegangen. Abbildung 13 beschreibt den Anteil des MIV am motorisierten Verkehr, also ohne Berücksichtigung des Fuß- und Radverkehrs.

In den Entwicklungs- und Schwellenländern kann vermutlich mit einem weiteren Anstieg des MIV gerechnet werden, da sich deren gute wirtschaftliche Entwicklung positiv auf die Einkommensverhältnisse der Bevölkerung auswirken könnte. Insbesondere in China und Indien, in denen der Anteil des MIV am Gesamtpersonenverkehr durch eine geringe Kfz-Dichte noch sehr gering ist, kann mit einer Zunahme gerechnet werden. Die weitere Entwicklung wird im Kapitel Veränderungen im Verkehrsverhalten bis 2025 vorgestellt.

Quelle: BMVBS (2009), S. 223.

Wegeketten, Wegehäufigkeiten, Wegstrecken und Reisegeschwindigkeit

Abb. 14 Beispiel einer Wegekette vom Wohnort zum Arbeitsplatz.

Tab. 3 Durchschnittliche Wegezahl und Wegstrecke ausgewählter europäischer Länder und der USA im Vergleich.

<table>
<thead>
<tr>
<th>Land</th>
<th>Durchschnittliche Wege pro Person/Tag</th>
<th>Durchschnittliche Wegstrecke pro Person/Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schweden</td>
<td>2,7</td>
<td>44,1</td>
</tr>
<tr>
<td>Finnland</td>
<td>2,9</td>
<td>41,8</td>
</tr>
<tr>
<td>Norwegen</td>
<td>3,3</td>
<td>37,9</td>
</tr>
<tr>
<td>Dänemark</td>
<td>3</td>
<td>37,3</td>
</tr>
<tr>
<td>Estland</td>
<td>k.A</td>
<td>37,3</td>
</tr>
<tr>
<td>Schweiz</td>
<td>3,6</td>
<td>37,1</td>
</tr>
<tr>
<td>Deutschland</td>
<td>3,3</td>
<td>36,9</td>
</tr>
<tr>
<td>Frankreich</td>
<td>2,9</td>
<td>35,3</td>
</tr>
<tr>
<td>Niederlande</td>
<td>3,1</td>
<td>31,9</td>
</tr>
<tr>
<td>Vereinigtes Königreich</td>
<td>2,9</td>
<td>31,1</td>
</tr>
<tr>
<td>Österreich</td>
<td>3</td>
<td>28,1</td>
</tr>
<tr>
<td>Tschechische Republik</td>
<td>k.A</td>
<td>21,9</td>
</tr>
<tr>
<td>Lettland</td>
<td>1,9</td>
<td>8,7</td>
</tr>
<tr>
<td>Belgien</td>
<td>3</td>
<td>k.A</td>
</tr>
<tr>
<td>Spanien</td>
<td>1,8</td>
<td>k.A</td>
</tr>
<tr>
<td>USA</td>
<td>4,0</td>
<td>49,0</td>
</tr>
</tbody>
</table>

26 SrV 2008: Ahrens et al. (2009), S. 15.
28 Bühler & Kunert (2008), S. 107.
Für Deutschland liegen aktuellere und differenziertere Werte vor. Die durchschnittliche Wegstrecke pro Person und Tag liegt im Jahr 2008 bei einem Wert von 40,0 km. Dieser Wert muss um die Anteile des nicht motorisierten Verkehrs reduziert werden. Es ist zudem zu berücksichtigen, dass es sich hierbei lediglich um einen Durchschnittswert handelt.

Tab. 4 Zurückgelegte Wegstrecken in km/Tag in Deutschland nach Geschlecht und Alter.

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Wegstrecke in km/Tag (2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alle Personen</td>
<td>40,0</td>
</tr>
<tr>
<td>Männlich</td>
<td>45,3</td>
</tr>
<tr>
<td>Weiblich</td>
<td>35,0</td>
</tr>
<tr>
<td>Nach Altersklassen</td>
<td></td>
</tr>
<tr>
<td>10–17</td>
<td>24,9</td>
</tr>
<tr>
<td>18–35</td>
<td>52,0</td>
</tr>
<tr>
<td>36–59</td>
<td>44,0</td>
</tr>
<tr>
<td>>=60</td>
<td>29,8</td>
</tr>
</tbody>
</table>

Quelle: BMVBS (2009), S. 236.

Tab. 5 Zurückgelegte Wegstrecken in km/Tag in Deutschland nach Berufstätigkeit.

<table>
<thead>
<tr>
<th>Nach Berufstätigkeit</th>
<th>Wegstrecke in km/Tag (2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voll berufstätig</td>
<td>55,8</td>
</tr>
<tr>
<td>Teilweise berufstätig</td>
<td>35,7</td>
</tr>
<tr>
<td>In Ausbildung</td>
<td>35,4</td>
</tr>
<tr>
<td>Hausfrau/-mann, arbeitslos</td>
<td>26,7</td>
</tr>
<tr>
<td>Rentner/-in</td>
<td>29,1</td>
</tr>
</tbody>
</table>

Quelle: BMVBS (2009), S. 236.

Beim Monozentrum Kassel sind 78,6 Prozent der Reisen länger als 200 km und können somit nicht mit einem Elektrofahrzeug zurückgelegt werden. Auch hier kann nur der intermodale Verkehr oder die Schnellladung genutzt werden, um das Elektrofahrzeug sinnvoll einsetzen zu können. Es ist nicht zu erwarten, dass lange Ladezeiten bei der An- oder Abreise zum und vom Urlaubsort in Kauf genommen werden.

Der Reise- und Freizeitverkehr stellt somit einen wesentlichen Hinderungsgrund für den Kauf eines Elektrofahrzeuges dar, auch wenn der Nutzer für seine täglichen Wegstrecken, z. B. zur Arbeit, das Elektrofahrzeug sehr gut nutzen kann (vgl. Tabelle 4 und Tabelle 5). Die Bereitschaft des Nutzers diesen Ausfall zu akzeptieren, könnte gering sein.

![Abbildung 15 Entfernungen der Reisen am Beispiel der Frankfurter Bürger (n = 2179).](image1)

![Abbildung 16 Entfernungen der Reisen am Beispiel der Kasseler Bürger (n = 238).](image2)

Die Reisegeschwindigkeit ist abhängig von der Verkehrsdichte, der Qualität bzw. dem Ausbaustatus der Infrastruktur und dem jeweils eingesetzten Verkehrsmittel. Besonders in Ballungsräumen ist eine hohe Verkehrsdichte zu erwarten, auch wenn deren Infrastruktur, zumindest in den Industriestaaten, bereits eine hohe Leistungsfähigkeit aufweisen dürfte.

Abb. 17: Zeitaufwand für den Weg zur Arbeits- bzw. Ausbildungsstätte in 2004 (Deutschland).

31 BMVB (2009), S. 236.

Nutzungsverhalten und Innovationsbereitschaft

Worin liegen Ursache und Wirkung für eine möglicherweise negative Kaufentscheidung? Erscheinen die technischen Lösungen nicht innovativ genug und werden gegebenenfalls mangelhaft vermarktet oder liegt die Ursache für eine möglicherweise geringere Akzeptanz tatsächlich im aktuellen Verkehrsverhalten, das eine Integration von Elektrofahrzeugen aus Sicht der Nutzer nicht zulässt? Als Beispiel aus dem IT-Bereich seien das Apple iPhone und iPad genannt, mit denen Apple sowohl den Markt der Mobiltelefone als auch den Markt der Tablet-PCs grundlegend verändert und sich innerhalb kürzester Zeit als ernst zu nehmender Konkurrent gegenüber Herstellern wie Nokia und Samsung positioniert hat. Der Erfolg stellte sich ein, obwohl die Produkte teurer als die der Konkurrenz sind und zum Teil einen geringeren Funktionsumfang haben oder besonderen Nutzungsrestriktionen beim Daten austausch unterliegen. Dennoch wurden durch das Design der Geräte, der einfachen Bedienung und nicht zuletzt durch das unterstützende Marketing über TV und Internet neue Maßstäbe gesetzt, die von zahlreichen Herstellern nun bei neuen Produkten aufgegriffen werden und bereits zu zahlreichen Patentrechtaus Expertenken führen. Werden diese Erkenntnisse auf die Elektromobilität angewandt, könnte durchaus eine

Veränderungen im Verkehrsverhalten bis 2025

Abb. 19 Modal Split 2008 und Prognose 2025 in Deutschland.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>MIV</th>
<th>Eisenbahn</th>
<th>Luftverkehr</th>
<th>Öffentlicher Straßenpersonennahverkehr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>80%</td>
<td>10%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>2025</td>
<td>78%</td>
<td>10%</td>
<td>6%</td>
<td>6%</td>
</tr>
</tbody>
</table>

37 BMVBS (2009), S. 223, 340.
38 ITP/BVU (2007).

Kernaussagen zum zukünftigen Verkehrsverhalten

![Modal Split im chinesischen Überlandverkehr (nach Personenkilometern).](image_url)
Nutzergruppen und deren Eignung für Elektrofahrzeuge

Aus Gründen der Datenlage und der Homogenität der Darstellung ist die Untersuchung auf den privaten Verkehr beschränkt. Für die dienstlichen Reisen können kaum Prognosen erstellt werden, da die Datenlage nicht ausreichend. Durch die Globalisierung sind gegebenenfalls Steigerungen im Fernverkehr zu erwarten, die in den meisten Fällen vermutlich nicht mit dem Pkw abgewickelt werden. Für die Fahrt im mittel- und unmittelbaren Umfeld des Betriebsstandortes kann davon ausgegangen werden, dass sich die Art und Länge der Fahrt nicht signifikant ändern werden.

Stadtbewohner

Abb. 22 Nutzergruppen und Wegstrecken im privaten Verkehr – theoretisches Modell.

43 Nähere Informationen zu den Fahrzeugen sind dem Kapitel „(Teil-)Elektrische Fahrzeuge und deren Preise“ zu entnehmen.
engpässen zu rechnen, da die Standzeiten der Fahrzeuge sehr hoch sind und in vielen Fällen nicht ausreichend Parkstädte zur Verfügung gestellt werden können. Halböffentliche Ladepunkte können das Angebot entsprechend ergänzen. Hinsichtlich der Verkehrsmittelwahl bietet der städtische Raum die meisten Angebote, wozu auch (E-)Carsharing oder (E-)Bikesharing gezählt werden können.

Pendler

Landbewohner

Eine Untersuchung der FH Frankfurt hinsichtlich des ländlichen Raums hat gezeigt, das sich dort die täglich zurückgelegten Strecken kaum von den Strecken der Stadtbevölkerung unterscheiden. So lag die durchschnittliche tägliche Wegstrecke im mittelhessischen Lauterbach bei ca. 37 km, die von Frankfurt am Main weicht laut der Studie MiD 2008 nur geringfügig ab. Dies könnte durch die zu weite Entfernung zum nächsten Ballungsraum oder Monozentrum begründet sein, so dass die Bevölkerung in oder in der näheren Umgebung ihres Wohnorts arbeitet. Die Rahmenbedingungen zur Reichweite sind mit denen der Stadtbevölker vergleichbar. Auch in den Anforderungen der Stadtbevölker und Landbewohner an die Reichweite von Elektroautos stehen, sind Gemeinsamkeiten zu beobachten, wobei speziell die Autofahrer im urbanen Raum die höchsten diesbezüglichen Ansprüche zu haben scheinen. Im ländlichen Raum ist die Stellplatzverfügbarkeit besonders positiv zu bewerten. Bei den (halb)öffentlichen Ladepunkten erfolgt die Bewertung analog zu den Pendlern. Hier ist zu erwarren, dass der geringe Bedarf durch den halböffentlichen Raum gedeckt werden kann. Negativ ist die Flexibilität in der Verkehrsmittelwahl zu beurteilen, da es auf dem Land nur einen eingeschränkten öffentlichen Verkehr gibt und einzelne Strecken zu weit für die Nutzung von Fahrrädern sein könnten.

Zusammenfassung der Analyse

Tabelle 7 fasst die oben beschriebenen Ergebnisse in einer Übersicht zusammen. In der linken Spalte befinden sich die relevanten Themenfelder, daneben werden sie nach Nutzergruppen auf die jeweilige Eignung für die Elektromobilität überprüft. In den Fällen mit doppelter Bewertung ist eine Aussage über die Qualität abhängig vom individuellen Vorhaben und weist daher eine große Spanne auf (z.B. Freizeit- und Reiseverkehr: Weg zum Zoo innerhalb der Stadt: Reichweite sehr gut geeignet, Weg zum Freizeitpark in 300 km Entfernung: Reichweite nicht geeignet). In manchen Fällen ist keine Bewertung möglich, da die Quelle und das Ziel des Weges bekannt sein müssen. Hier lassen sich die Ergebnisse jedoch aus den anderen Nutzergruppen ableiten.

Abschließende Bewertung

Ballungsräumen oder ländlichen Raum zu bauen. Eine andere Sichtweise wäre, durch den Wegzug aus der Stadt die Mietkosten zu senken und das Preis-Leistungs-Verhältnis beim Wohnumfeld zu verbessern. Ein weiterer Aspekt ist die Arbeitnehmermobilität. Diese steigt ebenfalls kontinuierlich an. Es wird erwartet, dass Mitarbeiter hochgradig mobil sind, um flexibel an verschiedenen Standorten national und international eingesetzt werden zu können und um ihren Erfahrungshorizont durch das Arbeiten in einem anderen Umfeld zu erweitern. 48 Die Erklärungen können ganz vielfältig sein und sollen hier nicht abschließend behandelt werden. Wichtig für die Szenarien ist, dass sich die Anzahl der Wege und Weglängen in begrenztem Umfang erhöhen, die oben beschriebenen Nutzergruppen dennoch weiterhin so bestehen bleiben und sich die Änderungen nicht maßgeblich auf die Nutzbarkeit von Elektrofahrzeugen auswirken werden.

48 Fokus Online (2008).

Tab. 7 Bewertungsmatrix der Nutzung von Elektromobilität im Pkw-Personenverkehr (privat).

<table>
<thead>
<tr>
<th>Bewertung</th>
<th>Stadtbewohner</th>
<th>Pendler (nah)</th>
<th>Pendler (mittel)</th>
<th>Pendler (fern)</th>
<th>Landbewohner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tägliche Wegstrecken</td>
<td>++</td>
<td>++</td>
<td>+/-</td>
<td>--</td>
<td>++</td>
</tr>
<tr>
<td>Freizeit- und Reiseverkehr</td>
<td>++/-1</td>
<td>++/-1</td>
<td>++/-1</td>
<td>++/-1</td>
<td>++/-1</td>
</tr>
<tr>
<td>Verbleibende Ladezeit</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++/-1</td>
<td>++/++</td>
</tr>
<tr>
<td>Stellplatzverfügbarkeit</td>
<td>+/-</td>
<td>++</td>
<td>++</td>
<td>0</td>
<td>++</td>
</tr>
<tr>
<td>Parkstandverfügbarkeit mit Ladepunkt</td>
<td>+/-</td>
<td>--</td>
<td>--</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>Flexibilität in der Verkehrsmittelwahl</td>
<td>++</td>
<td>+</td>
<td>-</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

++ Sehr gut geeignet bzw. hohe Verfügbarkeit
+ Gut geeignet bzw. mittlere Verfügbarkeit
− Weniger geeignet bzw. geringere Verfügbarkeit
−− Nicht geeignet bzw. sehr geringe Verfügbarkeit
o Bewertung nicht möglich, da abhängig von Quelle und Ziel des Pendlers

1 Steht in Abhängigkeit des Vorhabens und der Reichweite des genutzten Fahrzeugs
2 Bei Wochenendheimfahrern Ladung möglich, ansonsten eingeschränkt tagsüber

1.2 Zahlungsbereitschaft

Um die zukünftigen Markchancen von Elektrofahrzeugen einschätzen zu können, sollte die derzeitige Marktlandschaft analysiert werden. Das Fahrzeugvolumen im Gebraucht- und Neuwagenmarkt, die Preissegmente im Automobilbereich, die gezahlten Preise pro Fahrzeug und die finanzielle Situation der Autokäufer geben Aufschluss über den Gesamtmarkt und einen Ansatzpunkt für die preisliche Positionierung von Elektrofahrzeugen.

Fahrzeugvolumen im Gebraucht- und Neuwagenmarkt

Gesamte Fahrzeugpreise und Aufteilung nach Preissegmenten

Abb. 23 Anzahl der Neuzulassungen 2005 bis 2010.

Ganzheitliche Analyse der sozioökonomischen Bereiche unter Berücksichtigung der relevanten Sekundärliteratur

Finanzielle Situation der Käufer

Das monatliche Einkommen der Käufer kann einen ersten Anhaltspunkt für mögliche Fahrzeugkäufe und deren Preis geben. Es ist jedoch kein unmittelbarer Indikator für die finanzielle Ausstattung.

Abb. 26 Preissegmente bei Neuwagen (Pkw) 2010.

Abb. 27 Anteile Neuwagen nach Preissegmenten.

Quelle: Deutsche Automobil Treuhand GmbH (2011).

Abb. 28 Anteile Neuwagen nach Preissegmenten.

Quelle: Deutsche Automobil Treuhand GmbH (2011); Die Daten aus dem DAT-Report 2009 weisen für Gesamtdeutschland im Jahr 2008 nur 97 Prozent aus.

Abb. 28 Einkommensstruktur im Jahr 2010.

![Diagramm der Einkommensstruktur im Jahr 2010.](image)

Nettohaushaltseinkommen/Monat (EUR)

<table>
<thead>
<tr>
<th>Fahrzeughalter (Bestand)</th>
<th>Gebrauchtwagenkäufer</th>
<th>Neuwagenkäufer</th>
</tr>
</thead>
<tbody>
<tr>
<td>unter 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500 bis 999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000 bis 1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000 bis 2999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3000 bis 3999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4000 bis 4999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5000 und mehr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>keine Angabe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anschaffungskosten von Fahrzeugen mit elektrischem Antrieb

Die folgende Tabelle zeigt eine Auswahl von Fahrzeugen, für die nähere Informationen zur Verfügbarkeit, zu Preisen oder Reichweiten vorliegen. Die meisten der aufgeführten Fahrzeuge sind reine Elektrofahrzeuge. Ausnahmen bilden der Opel Ampera und der Toyota Prius PHV. Wobei der Ampera die durchschnittlichen täglichen Wegstrecken mit einer rein elektrischen Reichweite von 60 km gut abdecken kann, während der Prius PHV mit 20 km rein elektrischer Reichweite die Anforderung der Nutzer nicht vollständig erfüllen kann.

<table>
<thead>
<tr>
<th>Hersteller</th>
<th>Modell</th>
<th>Markt‑einführung</th>
<th>Reichweite (km)</th>
<th>Geschwindigkeit (km/h)</th>
<th>Ladezeit (Std.)</th>
<th>Preis (Euro)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mitsubishi</td>
<td>iMiiev</td>
<td>2009</td>
<td>150</td>
<td>130</td>
<td>6</td>
<td>35.000</td>
</tr>
<tr>
<td>Citroën</td>
<td>C-Zero</td>
<td>2010</td>
<td>150</td>
<td>130</td>
<td>6</td>
<td>30.000</td>
</tr>
<tr>
<td>Nissan</td>
<td>Leaf</td>
<td>2010</td>
<td>160</td>
<td>144</td>
<td>7–8</td>
<td>24.700⁵</td>
</tr>
<tr>
<td>Peugeot</td>
<td>iOn</td>
<td>2010</td>
<td>150</td>
<td>130</td>
<td>6</td>
<td>24.600⁴</td>
</tr>
<tr>
<td>Ford</td>
<td>Focus Electric</td>
<td>2011</td>
<td>100</td>
<td>136</td>
<td>3–4</td>
<td>k. A.</td>
</tr>
<tr>
<td>Mercedes-Benz</td>
<td>Vito E-Cell</td>
<td>2011</td>
<td>190</td>
<td>80</td>
<td>10–12</td>
<td>k. A.</td>
</tr>
<tr>
<td>Opel</td>
<td>Ampera</td>
<td>2011</td>
<td>60/500²</td>
<td>161</td>
<td>4</td>
<td>42.900</td>
</tr>
<tr>
<td>Renault</td>
<td>Kangoo Rapid Z.E.</td>
<td>2011</td>
<td>160</td>
<td>130</td>
<td>6–8</td>
<td>23.800²</td>
</tr>
<tr>
<td>Fiat</td>
<td>500EV</td>
<td>2012</td>
<td>k. A.</td>
<td>k. A.</td>
<td>k. A.</td>
<td>k. A.</td>
</tr>
<tr>
<td>Renault</td>
<td>Fluence Z.E.</td>
<td>2012</td>
<td>160</td>
<td>135</td>
<td>6–8</td>
<td>26.200²</td>
</tr>
<tr>
<td>Renault</td>
<td>Twizy</td>
<td>2012</td>
<td>100</td>
<td>75</td>
<td>3,5</td>
<td>k. A.</td>
</tr>
<tr>
<td>Renault</td>
<td>Zoe</td>
<td>2012</td>
<td>160</td>
<td>140</td>
<td>6–8</td>
<td>k. A.</td>
</tr>
<tr>
<td>Smart</td>
<td>Fortwo</td>
<td>2012</td>
<td>140</td>
<td>120</td>
<td>8</td>
<td>19.000²</td>
</tr>
<tr>
<td>Toyota</td>
<td>IQ-EV</td>
<td>2012</td>
<td>80</td>
<td>100</td>
<td>3–4</td>
<td>22.000</td>
</tr>
<tr>
<td>Toyota</td>
<td>Prius PHEV</td>
<td>2012</td>
<td>20/740¹</td>
<td>180</td>
<td>1,5</td>
<td>35.000</td>
</tr>
<tr>
<td>Toyota</td>
<td>RAV EV</td>
<td>2012</td>
<td>160</td>
<td>k. A.</td>
<td>k. A.</td>
<td>k. A.</td>
</tr>
<tr>
<td>BMW</td>
<td>Megacity Vehicle</td>
<td>2013</td>
<td>k. A.</td>
<td>k. A.</td>
<td>k. A.</td>
<td>k. A.</td>
</tr>
<tr>
<td>Mercedes-Benz</td>
<td>SLS AMG E-Cell</td>
<td>2013</td>
<td>200</td>
<td>250</td>
<td>k. A.</td>
<td>k. A.</td>
</tr>
<tr>
<td>Volkswagen</td>
<td>Golf Blue-E-Motion</td>
<td>2013</td>
<td>150</td>
<td>135</td>
<td>6</td>
<td>k. A.</td>
</tr>
<tr>
<td>Volkswagen</td>
<td>UP! Blue-E-Motion</td>
<td>2013</td>
<td>130</td>
<td>135</td>
<td>5–6</td>
<td>k. A.</td>
</tr>
</tbody>
</table>

¹ Elektrischer Anteil/fossiler Anteil Reichweite
² Preis ohne Batterieleasing
³ US-amerikanischer Marktpreis
⁴ Leasingpreis

Die Entwicklung des Gebrauchtwagenmarktes kann derzeit nicht eingeschätzt werden. Insbesondere über die Wertverhältnisse der Elektrofahrzeuge bzw. der Batterien besteht Unsicherheit.

Komfortversich

Die CAMA-Studie der Universität Essen\(^{50}\) stellte die Frage, ob und bei welchen Inhalten die Nutzer bereit wären, zugunsten eines niedrigeren Kaufpreises auf bestimmte Ausstattungsmerkmale des Elektroautos zu verzichten. Etwa 38 Prozent der Befragten könnte sich vorstellen, auf bestimmte Merkmale zu verzichten oder einen Verzicht in Erwägung zu ziehen. 29 Prozent würden nicht darauf verzichten oder einen Verzicht in Erwägung ziehen und 33 Prozent der Befragten sind sich noch unsicher. Einschränkungen beim Komfort werden demnach nur von einem Drittel der Nutzer akzeptiert. Die unsicheren Nutzer warten vermutlich die Preisentwicklung ab und entscheiden sich dann. Bei den genannten Ausstattungsmerkmalen handelt es sich zum Großteil um Ausstattungsmerkmale, die auch bei konventionellen Fahrzeugen als „Add-ons“ angesehen werden. Hingegen sind die Nutzer nicht bereit, auf solche Merkmale zu verzichten, die heutzutage schon vielfach serienmäßig angeboten werden.

Die Nutzer würden am ehesten auf die folgenden Ausstattungsmerkmale verzichten:
- Lederausstattung (92 Prozent)
- Einparkhilfe (79 Prozent)
- Sitz-/Standheizung (75 Prozent)
- Elektrisches Schiebedach (72 Prozent)
- Anhängerkupplung (69 Prozent)

Die folgenden Ausstattungsmerkmale würden am seltensten genannt und werden daher vermutlich als wichtig erachtet:
- Zentralverriegelung (20 Prozent)
- Elektrisches Stabilitätsprogramm (14 Prozent)
- Seitenairbags (4 Prozent)
- Servolenkung (2 Prozent)
- Antilockiersystem (1 Prozent)

\(^{49}\) Zum Teil enthalten die Premierenmodelle später aufpreispflichtige Sonderausstattungen.

\(^{50}\) Fojzik (2010).
1.3 Anforderungen und Erwartungen der Nutzer an Elektromobilität

Die Politik sieht die Elektromobilität als wichtige Komponente für einen nachhaltigen und ökologisch sinnvollen Umbau des derzeitigen Verkehrswesens.51 In diesem Zusammenhang unterstützt die Elektromobilität u. a. infolge der Einführung intelligenter Stromnetze (Smart Grid) sowie der Möglichkeit der Zwischenspeicherung von Energie während der Ruhezeit der Fahrzeuge die von der Bundesregierung initiierte Energiewende.52 Um dieses Ziel zu erreichen, muss eine breite Akzeptanz in der Bevölkerung erreicht werden. Ansatzpunkte sind: die Umwelteinstellung und die ökologische Erwartungshaltung, die Bereitschaft das Verkehrsverhalten an die sich neu ergebenden Rahmenbedingungen anzupassen, die Höhe der Kosten für Anschaffung, Betrieb und Unterhalt der Elektrofahrzeuge und nicht zuletzt der gewünschte Komfort bei der Nutzung der Fahrzeuge und der (Lade-)Infrastruktur. Mithilfe von Normen und Standards kann der zuletzt genannte Aspekt sichergestellt werden (Einfachheit der Bedienung des Fahrzeuges, der Ladeinfrastruktur, der IKT etc.).

Umwelteinstellung und ökologische Erwartungshaltung

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{chart.png}
\caption{Abbildung 29 Bedeutung eines niedrigen CO\textsubscript{2}-Ausstoßes beim Neuwagenkauf (n = 351).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{chart2.png}
\caption{Abbildung 30 Abhängigkeitsdreieck Mobilität-Kosten-Umwelt.}
\end{figure}

51 Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (2011).
52 Pressestelle der Bundesregierung (2011).
53 Die Bundesregierung (2011).
54 ARAL AG (2011), S. 17.

Anpassungsbereitschaft des Verkehrsverhaltens

Gemäß der ARAL-Studie erwarten 80 Prozent der Nutzer eine Reichweite, die oberhalb von 300 km liegt, nur 15 Prozent akzeptieren eine Mindestreichweite von 150 km. Damit findet die Mehrzahl der derzeit auf dem Markt verfügbaren reinen Elektroautos nach dieser Studie keine Akzeptanz bei den Nutzern. Solange die technischen Limitierungen bei rein elektrisch betriebenen Fahrzeugen bestehen, bieten nur Hybridfahrzeuge die gewünschten Reichweiten oder alternativ die Nutzung ergänzernder Mobilitätsangebote (Bahn, Carsharing, Mietwagen etc.). Die studentische Befragung bestätigt die hohen Erwartungen an die Reichweite. Über 70 Prozent der Befragten fordern Reichweiten von mindestens 300 km und davon 38 Prozent von mehr als 500 km. Dies lässt vermuten, dass die Akzeptanz bei den derzeitigen Nutzern erst steigt, sobald die Elektrofahrzeuge höhere Reichweiten erzielen oder die alternativen Mobilitätskonzepte an Attraktivität gewinnen.

Abb. 31 Geforderte Mindestreichweite von Elektroautos (n = 278).
Welche Mindestreichweite müsste ein Elektrofahrzeug aufweisen?

<table>
<thead>
<tr>
<th>Reichweite</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>mind. 60 km</td>
<td>5%</td>
</tr>
<tr>
<td>mind. 150 km</td>
<td>15%</td>
</tr>
<tr>
<td>mind. 300 km</td>
<td>26%</td>
</tr>
<tr>
<td>über 350 km</td>
<td>54%</td>
</tr>
</tbody>
</table>

Abb. 32 Geforderte Reichweite von Elektroautos (n = 100).
Welche Reichweite sollte ein Elektrofahrzeug zurücklegen können?

<table>
<thead>
<tr>
<th>Reichweite</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>unter 100 km</td>
<td>2%</td>
</tr>
<tr>
<td>100–199 km</td>
<td>5%</td>
</tr>
<tr>
<td>unter 100 km</td>
<td>2%</td>
</tr>
<tr>
<td>200–299 km</td>
<td>18%</td>
</tr>
<tr>
<td>300–399 km</td>
<td>22%</td>
</tr>
<tr>
<td>400–499 km</td>
<td>15%</td>
</tr>
</tbody>
</table>

Quelle: Studentische Befragung FH Frankfurt (April/Mai 2011).

55 MID 2008: infas, DLR (2010), S. 82.
Durch die vorgegebenen Antwortmöglichkeiten besteht die Möglichkeit, dass die Nutzer in ihrer Entscheidung beeinflusst wurden. Eine weitere Befragung der FH Frankfurt im Rahmen der Demonstrationsvorhaben in der Modellregion Rhein-Main zeigt, dass sich bei einer auf die Elektromobilität angepassten Fragestellung zum Teil andere Ergebnisse ergeben.

Fast jeder vierte Befragte würde sogar Reichweiten bis zu 100 km akzeptieren. Jedoch wird auch bei dieser Befragung deutlich, dass Reichweiten von bis zu 200 und mehr Kilometern von 58 Prozent der Befragten gewünscht werden. Da diese Erwartungen an die Reichweite von den meisten Elektrofahrzeugen bisher nicht erfüllt werden, ist die Reichweite ein entscheidender Aspekt für die Nutzerakzeptanz.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Abb_33.pdf}
\caption{Gewünschte Reichweite von Elektrofahrzeugen gemäß einer Nutzerbefragung in der Modellregion Rhein-Main.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Abb_34.pdf}
\caption{Nutzererfahrungen zur Reichweite.}
\end{figure}

Quelle: Befragung der FH FFM im Rahmen der Demonstrationsvorhaben in der Modellregion Rhein-Main.

Quelle: ADAC blog Elektromobilität (2011 (2)).

Kosten für die Anschaffung, den Betrieb und den Unterhalt von Elektrofahrzeugen

Nutzungskomfort der Elektrofahrzeuge und bevorzugte Ladestandorte

58 PwC, Fraunhofer IAO (2010), S. 12.
59 Aubel (2010), S. 12.
60 Fraunhofer ISI (2010), S. 18.
1.4 Integration der Elektromobilität in bestehende Wegeketten

Aktuelle Rolle der Elektromobilität im Verkehrsgeschehen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Anzahl Elektroautos</th>
<th>Veränderung</th>
<th>Anzahl Hybridautos</th>
<th>Veränderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>2.534</td>
<td>k.A.</td>
<td></td>
<td>k.A.</td>
</tr>
<tr>
<td>2003</td>
<td>2.348</td>
<td>−7,3 %</td>
<td>−</td>
<td>k.A.</td>
</tr>
<tr>
<td>2004</td>
<td>2.169</td>
<td>−7,6 %</td>
<td>−</td>
<td>k.A.</td>
</tr>
<tr>
<td>2005</td>
<td>2.038</td>
<td>−6,0 %</td>
<td>−</td>
<td>k.A.</td>
</tr>
<tr>
<td>2006</td>
<td>1.931</td>
<td>−5,3 %</td>
<td>5.971</td>
<td>k.A.</td>
</tr>
<tr>
<td>2007</td>
<td>1.790</td>
<td>−7,3 %</td>
<td>11.275</td>
<td>+88,8 %</td>
</tr>
<tr>
<td>2008</td>
<td>1.436</td>
<td>−19,8 %</td>
<td>17.307</td>
<td>+53,5 %</td>
</tr>
<tr>
<td>2009</td>
<td>1.425</td>
<td>+1,1 %</td>
<td>22.330</td>
<td>+29,0 %</td>
</tr>
<tr>
<td>2010</td>
<td>1.588</td>
<td>+9,4 %</td>
<td>28.862</td>
<td>+29,3 %</td>
</tr>
<tr>
<td>2011</td>
<td>2.307</td>
<td>+45,3 %</td>
<td>37.256</td>
<td>+29,1 %</td>
</tr>
</tbody>
</table>

Es zeigt sich, dass der Anteil der Elektrofahrzeuge in allen untersuchten Ländern weit unter 1 Prozent liegt. Die höchsten Anteile weisen Dänemark (0,074 Prozent), die USA (0,023 Prozent) und Frankreich (0,023 Prozent) auf. Während Dänemark in absoluten Zahlen mit 94 Fahrzeugen auf dem vorletzten Platz der untersuchten Länder rangiert, führen die USA, Japan und Frankreich mit 2.412, 986 und 614 Elektro-Pkw die Liste an. In den Ländern Südkorea, Portugal, Irland und Spanien liegen die Anteile unterhalb von 0,001 Prozent. Deutschland liegt in der hinteren Hälfte der Länder mit zugelassenen Elektro-Pkw. Auch international kann demnach die Rolle der Elektro-Pkw am Verkehrsgeschehen als gering eingestuft werden.

Abb. 35 Anteil der neu zugelassenen Elektro-Pkw an den Pkw-Zulassungen 2009.

Ganzheitliche Analyse der sozioökonomischen Bereiche unter Berücksichtigung der relevanten Sekundärliteratur

Abb. 36 Anzahl der im Jahr 2009 neu zugelassenen Elektro-Pkw.

McKinsey prognostiziert die Anteile der Elektro-Pkw bis 2014 auf die in Abbildung 37 dargestellten Werte.

Identifizierung der Substitutionspotenziale gegenüber anderen Verkehrsmitteln

Die Reisegeschwindigkeit hängt von der Motor- und der Batterieleistung ab. Je schneller das Elektrofahrzeug fährt, desto höher ist der Energieverbrauch und desto geringer somit die Reichweite. Aus diesem Grund sind viele Elektrofahrzeuge derzeit bei ca. 130 km/h abgeriegelt.64 Der Sportwagen Tesla Roadster erreicht eine Höchstgeschwindigkeit von 200 km/h, ist jedoch ebenfalls abgeriegelt. Die durchschnittliche Reichweite von 80 km pro Ladung ist in den USA und Japan am größten. In Deutschland liegt der Anteil bei 1,5 Prozent, in Italien bei 1,2 Prozent und in Spanien bei 1,3 Prozent.

63 S. a. Kapitel 5.2.
64 Vgl. auch Tabelle 8.
tägliche Reisegeschwindigkeit liegt der Erwartung nach unter den genannten Werten. Als eine Ursache ist die hohe Verkehrsichte zu den Spitzenzeiten im Berufsverkehr zu nennen, die die Durchschnittsreisegeschwindigkeit sinken lässt. Für die Bewältigung des täglichen Verkehrs sind die genannten Höchstgeschwindigkeiten also ausreichend. Probleme bei der Akzeptanz der Nutzer könnte es bei längeren Strecken geben, die über Autobahnen und Schnellstraßen führen.

Mögliche Hinderungsgründe für den Umstieg auf Elektrofahrzeuge

Abb. 38 Nutzerbefragung zu den Hinderungsgründen beim Kauf eines Elektrofahrzeugs.

<table>
<thead>
<tr>
<th>Hinderungsgrund</th>
<th>Prozentsatz</th>
</tr>
</thead>
<tbody>
<tr>
<td>… ich, wenn ich es mir genau überlege, eigentlich keinen eigenen Pkw benötige.</td>
<td>42%</td>
</tr>
<tr>
<td>… Elektroautos herkömmliche Autos nie ersetzen werden können.</td>
<td>31%</td>
</tr>
<tr>
<td>… Elektroautos erst genauso leistungsstark wie herkömmliche Fahrzeuge sein sollen.</td>
<td>17%</td>
</tr>
<tr>
<td>… der Staat den Vertrieb von Elektroautos erst kräftig subventionieren muss.</td>
<td>12%</td>
</tr>
<tr>
<td>… die Anschaffungskosten zu hoch sind.</td>
<td>7%</td>
</tr>
<tr>
<td>In absehbarer Zeit kommt für mich daher der Kauf eines Elektroautos nicht infrage.</td>
<td>4%</td>
</tr>
</tbody>
</table>

65 VDI (2011).
Elektromobilität – Normen bringen die Zukunft in Fahrt

Im Rahmen der CAMA-Studie der Universität Duisburg-Essen wurden Personen zu ihrem Wissenstand über Reichweite, Ladezeiten und Kaufpreis befragt. Dabei stellte sich heraus, dass der Wissensstand nicht ausreichend ist. So behaupteten bspw. 53 Prozent der Befragten, Elektro-Pkw könnten ohne Zwischenladung 200 bis 600 und mehr Kilometer zurücklegen. Die Kosten hatten die Befragten im Fokus. Hier sagten 88 Prozent, dass die Anschaffungskosten höher als bei einem Benzinfahrzeug seien, wobei hier mehr als die Hälfte der Befragten von keinem deutlich höheren Preis ausging.

Sicherheitsbedenken

Abb. 39 Der Wissensstand der Befragten zur Elektromobilität.

Ich weiß über Elektromobilität ...

<table>
<thead>
<tr>
<th>relativ wenig</th>
<th>61 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>relativ viel</td>
<td>9 %</td>
</tr>
<tr>
<td>durchschnittlich viel</td>
<td>30 %</td>
</tr>
</tbody>
</table>

67 Fojzik (2010).
68 VDE (2010).

Ein anderer Sicherheitsaspekt ergibt sich aus der Möglichkeit des induktiven Ladens. Aus Sicht der Nutzer kann das induktive Laden den Komfort erhöhen.

II. Wirtschaft

2.1 Kostenentwicklung

Der Übergang zu einer „grünen“ Verkehrslandschaft bedeutet einen Strukturwandel, der zumindest in den ersten Jahren mit hohen Kostenbelastungen verbunden ist. Während das Ziel, die Bedeutung des Verbrennungsmotors im Straßenverkehr zu senken, weitgehend unstrittig ist, ist fraglich, mit welcher Antriebstechnologie dieses Ziel am besten erreicht wird. In diesem Zusammenhang spielen neben den in diesem Kapitel betrachteten Kostenaspekten Punkte wie z. B. Geschwindigkeit, Reichweite oder Ladezeit eine wichtige Rolle. Insbesondere bei den beispielhaft genannten drei Punkten schneidet die Brennstoffzelle gegenüber der Batterie bereits heute vergleichsweise gut ab.70

71 UNITY (2011).
72 Germany Trade and Invest (2011).
74 UNITY (2011), S. 16.
Erste Berechnungen gehen davon aus, dass in Deutschland insgesamt 952.000 Ladepunkte benötigt werden. Demgegenüber wird erwartet, dass für den Aufbau einer Wasserstofftankstelleninfrastruktur lediglich 1.000 Tankstellen notwendig sind.76 Berechnungen im zweiten Bericht der NPE zeigen einen Bedarf von 900.000 Ladepunkten im Jahr 2020. Folgende Annahmen liegen den Berechnungen zugrunde:78
- Fahrzeuge werden durchschnittlich alle zwei Tage geladen.
- PHEV und REEV werden bei der Bedarfsidentifizierung genauso wie Elektroautos behandelt.
- Um Vertrauen bei den Nutzern zu schaffen (Reichweite), werden für je zehn Elektrofahrzeuge ein öffentlicher oder halböffentlicher Ladepunkt zusätzlich geplant.
- Schnelle Zwischenladung ist ein wichtiger Bestandteil der öffentlichen Ladeinfrastruktur. Bis zum Jahr 2020 wird eine maximale Ladeleistung von 100 kWh erwartet.

\begin{table}[!h]
\centering
\begin{tabular}{l|ccccc}
\hline
\textbf{Fahrzeug} & \textbf{Kaufpreis} & \textbf{Wartung und Instandhaltung} & \textbf{Betankungskosten} & \textbf{Infrastruktur} & \textbf{TCO} \\
\hline
\textbf{A/B Segment} & & & & & \\
FCEV & 16,0 & 2,5 & 4,4 & 1,2 & 24 \\
BEV & 15,2 & 2,2 & 2,7 & 2,5 & 22,6 \\
PHEV & 13,7 & 2,8 & 3,4 & 1,4 & 21,3 \\
ICE-Gasoline & 11,1 & 3,0 & 4,1 & 0,5 & 18,7 \\
ICE-Diesel & 11,2 & 3,0 & 4,1 & 0,4 & 18,7 \\
\hline
\textbf{C/D Segment} & & & & & \\
FCEV & 25,7 & 4,2 & 5,2 & 1,4 & 36,5 \\
BEV & 26,3 & 3,6 & 3,2 & 2,5 & 35,6 \\
PHEV & 25,0 & 4,9 & 3,7 & 1,4 & 35,0 \\
ICE-Gasoline & 21,1 & 5,4 & 5,3 & 0,6 & 32,3 \\
ICE-Diesel & 21,6 & 5,6 & 5,2 & 0,5 & 32,9 \\
\hline
\textbf{J Segment} & & & & & \\
FCEV & 32,7 & 5,3 & 6,2 & 1,7 & 45,9 \\
BEV & 37,3 & 5,2 & 3,9 & 2,5 & 48,9 \\
PHEV & 34,7 & 6,7 & 5,1 & 1,4 & 47,9 \\
ICE-Gasoline & 28,3 & 7,0 & 6,9 & 0,8 & 42,9 \\
ICE-Diesel & 29,1 & 7,4 & 7,2 & 0,7 & 44,4 \\
\hline
\end{tabular}
\end{table}

76 Portal-21 Onlineverlag GmbH (2010).
77 Handelsblatt (2011).
78 NPE (2011), S. 36 f.

In einer aktuellen Studie von Oliver Wyman wird bestätigt, dass sich die Herstellungskosten von Verbrennungsfahrzeugen und batteriebetriebenen Fahrzeugen immer mehr annähern.\(^80\)

Eine Betrachtung der TCO führt in einer weiteren Studie zu dem Ergebnis, dass bereits im Jahr 2025 die TCO eines erworbenen Elektroautos unterhalb der TCO eines erworbenen Verbrennungsfahrzeugs liegen. Das ist insbesondere darauf zurückzuführen, dass der Wertverlust eines Elektroautos, der zu einem Großteil auf die Haltbarkeit der Batterie zurückzuführen ist, in einem betrachteten 4-Jahres-Zeitraum deutlich gesenkt werden kann.\(^81\)

\(^80\) Wyman, O. (2009).
\(^81\) Wyman, O. (2010).
Elektromobilität – Normen bringen die Zukunft in Fahrt

Ganzheitliche Analyse der sozioökonomischen Bereiche unter Berücksichtigung der relevanten Sekundärliteratur

Exkurs TCO

Der Wertverlust ist bei Elektrofahrzeugen mit bis zu 75% der TCO der größte Kostenpunkt. Bei herkömmlichen Fahrzeugen ist der Kostenpunkt Wertverlust im Vergleich dazu nur halb so hoch.

Kraftstoffkosten und Ausgaben für Steuern und Versicherungen fallen bei konventionellen Verbrennungsfahrzeugen höher als bei Elektrofahrzeugen aus.

Heutzutage erklären speziell die hohen Batteriekosten den Großteil der Differenz des Preises eines Elektrofahrzeugs gegenüber einem Verbrennungsfahrzeug. Gemäß der Ergebnisse einer Studie des Wirtschaftsministeriums Baden-Württemberg besteht das Potenzial, diese in Zukunft erheblich zu senken.82

Demnach ist die Entwicklung der Batteriepreise eine wesentliche Komponente, die die Marktentwicklung von Elektrofahrzeugen entscheidend beeinflussen wird. Hinsichtlich der Entwicklung der Batteriepreise wird von Baum, Dobberstein und Schuler auf Basis bestehender Prognosen zukünftig eine jährliche Abnahme von 6 Prozent bis 10 Prozent erwartet. Diese große Spanne zeigt insbesondere dass weiterhin Unsicherheiten hinsichtlich der Realisierung und Intensität einer Massenproduktion und von Entwicklungsfortschritten bestehen.83

Die Autoren einer aktuellen Studie der Boston Consulting Group (BCG) erwarten ebenfalls stark sinkende Batteriekosten. So berechnen sie für den Zeitraum 2009 bis 2020 einen Rückgang der Kosten von etwa 60 bis 65 Prozent.84 Eine Studie von Credit Suisse kommt zu einem ähnlichen Ergebnis: Demnach sinken die Kosten für Lithium-Ionen Batterien im gleichen Zeitraum um 58 Prozent.85

82 Wirtschaftsministerium Baden-Württemberg/e-mobil BW GmbH/Fraunhofer IAO (2010), S. 43.
83 Baum/Dobberstein/Schuler (2011).
84 The Boston Consulting Group Inc. (2010).
85 Credit Suisse Securities (USA) LLC (2010), S. 7.

Gemäß den Ergebnissen des zweiten Berichts der NPE sinken die Batteriekosten im Zeitraum 2011 bis 2020 um 65 Prozent.\footnote{NPE (2011)}

Insbesondere dieser Sachverhalt trägt die Annahme, dass sich die Netto-Listenpreise von elektrisch betriebenen Fahrzeugen und konventionellen Fahrzeugen im Zeitablauf weiter annehmen werden.\footnote{NPE (2011)}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{abb44.png}
\caption{Prognose zur Entwicklung der Batteriepreise.}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{lcccc}
\hline
\toprule
& 2011 & 2014 & 2017 & 2020 \\
\hline
Batteriekosten & 800 & 400 & 300 & 280 \\
\hline
\end{tabular}
\caption{Entwicklung der Batteriekosten.}
\label{tab:batteriekosten}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{lcccc}
\hline
\toprule
& 2011 & 2014 & 2017 & 2020 \\
\hline
BEV & 27.444 & 19.336 & 17.228 & 16.720 \\
\hline
Otto REEV & 34.213 & 27.197 & 25.281 & 24.725 \\
\hline
D Diesel & 32.787 & 33.497 & 33.734 & 33.734 \\
Otto PHEV & 44.077 & 39.553 & 37.860 & 37.860 \\
\hline
NFZ Diesel & 40.000 & 42.000 & 42.000 & 42.000 \\
Diesel PHEV & 54.797 & 52.048 & 50.793 & 50.430 \\
\hline
\end{tabular}
\caption{Vergleich der Entwicklung der Listenpreise von Fahrzeugen mit unterschiedlichen Antriebstechnologien.}
\label{tab:listenpreise}
\end{table}
Die Rohstoffknappheit89 kann auf der anderen Seite dazu führen, dass der Preis der Materialien für die Batterie in Zukunft deutlich ansteigen wird. Ähnlich den begrenzten Ölvorkommen bestehen in Deutschland keine nennenswerten Lithiumreserven. Um die Lithium-Ionen-Technologie nutzen zu können, müsste das Lithium aus anderen Ländern wie z.B. Argentinien oder Chile importiert werden.90

Neben der geografischen Komponente ist auch die allgemeine Knappheit der Ressource ein wesentliches Thema. Tahil berechnet, dass die Versorgung einer Milliarde PHEVs (entspricht in etwa dem derzeitigen globalen Gesamtfahrzeugbestand) mit jeweils einer 5-kWh-Lithium-Ionen-Batterie einem Verbrauch von 24 Prozent der gesamten Lithiumreserven entspricht.91 Würden alle Fahrzeuge rein elektrisch betrieben, entspräche dies einem Anteil von etwa 60 Prozent aller Lithiumreserven.92 Das zeigt noch einmal wie wichtig die Entwicklung geeigneter Recyclingverfahren ist. Neben dem Recyclingvorgang selbst ist auch der Kreislauf, bzw. die sichere Überführung der Batterie in die und aus der Recyclingseinheit sicherzustellen.93

\textbf{Tab. 13 Geografische Verteilung wesentlicher Lithiumvorkommen.}

<table>
<thead>
<tr>
<th>Land</th>
<th>Produktion 2005 (in t)</th>
<th>Nutzbare Reserven (in t)</th>
<th>Reserven gesamt (in t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>1.0001</td>
<td>38.000</td>
<td>410.000</td>
</tr>
<tr>
<td>Argentinien</td>
<td>2.000</td>
<td>2.000.000*</td>
<td>2.000.000*</td>
</tr>
<tr>
<td>Australien</td>
<td>4.000</td>
<td>160.000</td>
<td>260.000</td>
</tr>
<tr>
<td>Bolivien</td>
<td>–</td>
<td>–</td>
<td>5.400.000</td>
</tr>
<tr>
<td>Brasilien</td>
<td>240</td>
<td>190.000</td>
<td>910.000</td>
</tr>
<tr>
<td>Kanada</td>
<td>700</td>
<td>180.000</td>
<td>360.000</td>
</tr>
<tr>
<td>Chile</td>
<td>8.000</td>
<td>3.000.000</td>
<td>3.000.000</td>
</tr>
<tr>
<td>China</td>
<td>2.700</td>
<td>640.000</td>
<td>1.100.000</td>
</tr>
<tr>
<td>Portugal</td>
<td>320</td>
<td>k. A.</td>
<td>k. A.</td>
</tr>
<tr>
<td>Russland</td>
<td>2.200 k. A.</td>
<td>k. A.</td>
<td>k. A.</td>
</tr>
<tr>
<td>Simbabwe</td>
<td>240</td>
<td>23.000</td>
<td>27.000</td>
</tr>
<tr>
<td>Gesamt</td>
<td>21.400</td>
<td>6.200.000</td>
<td>13.400.000</td>
</tr>
</tbody>
</table>

1 Geschätzter Wert.

89 Hock (2011).
90 Tahil (2006).
91 Tahil (2006).
92 Wallentowitz/Freialdenhoven (2011).

Tahil zeigt, dass bspw. Nickel- und Zinkvorräte wesentlich reichhaltiger als Lithiumvorräte vorhendend sind:

Abb. 45 Produktion, Reserven und potenzieller Bedarf an Metallen.

<table>
<thead>
<tr>
<th>Metall</th>
<th>Produktion 2005</th>
<th>Nutzbare Reserven</th>
<th>Benötigte Menge (1 Mrd. PHEV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium</td>
<td>250</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Nickel</td>
<td>200</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>Zink</td>
<td>150</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

94 DIN Deutsches Institut für Normung e.V. (2009), S. 48: „Für Kondensatoren für den E-Antrieb wird Forschungsbedarf gesehen.“
95 UNITY (2011).
Im Bereich Wartung und Instandhaltung kann die verstärkte Integration von IKT in das Elektrofahrzeug neue Perspektiven für Kosteneinsparungen eröffnen. So können bestimmte Themenbereiche mittels einer Ferndiagnose bearbeitet werden. Neben dem Erkennen von Fehlfunktionen kann zum Teil auch eine Reparatur per Fernsteuerung möglich sein.

Steigende Kraftstoffkosten für Verbrennungsfahrzeuge können die Entwicklung der Elektromobilität weiter befördern, da der Vorteil niedriger Betriebskosten weiter an Bedeutung gewinnt. Ergebnisse des AXA-Verkehrssicherheitsreport 2009 zeigen, dass etwa 54 Prozent der befragten Autofahrer angeben, ihr Fahrverhalten aufgrund der gestiegenen Benzinpreise geändert zu haben.

Gemäß einer aktuellen PwC-Befragung sind die geringen Betriebskosten für Nutzer der Hauptgrund, um einen evtl. Aufschlag auf die konventionellen Anschaffungskosten zu akzeptieren. Andere Gründe sind Umweltaspekte oder Steuervorteile.

<table>
<thead>
<tr>
<th>Fahrzeugtyp</th>
<th>Benzinfahrzeug</th>
<th>Elektrofahrzeug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraftstoffverbrauch und -kosten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzinpreis (Euro/l)</td>
<td>1,66–2,16</td>
<td>–</td>
</tr>
<tr>
<td>Kraftstoffverbrauch (l/100 km)</td>
<td>5,5</td>
<td>–</td>
</tr>
<tr>
<td>Kraftstoffkosten (Euro/km)</td>
<td>0,091–0,119</td>
<td>–</td>
</tr>
<tr>
<td>Stromverbrauch und -kosten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strompreis (Euro/kWh)</td>
<td>–</td>
<td>0,22</td>
</tr>
<tr>
<td>Stromverbrauch (kWh/km)</td>
<td>–</td>
<td>0,135</td>
</tr>
<tr>
<td>Stromkosten (Euro/km)</td>
<td>–</td>
<td>0,0397</td>
</tr>
<tr>
<td>Kosten für Wartung und Instandhaltung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ölwechsel mit Ölfilter (Euro/km)</td>
<td>0,007</td>
<td>–</td>
</tr>
<tr>
<td>Luftfilter (Euro/km)</td>
<td>0,001</td>
<td>–</td>
</tr>
<tr>
<td>Zündkerzen (Euro/km)</td>
<td>0,002</td>
<td>–</td>
</tr>
<tr>
<td>Wartungskosten Elektrofahrzeug (Euro/km)</td>
<td>–</td>
<td>–0,005</td>
</tr>
<tr>
<td>Wechsel Bremsflüssigkeit (Euro/km)</td>
<td>0,002</td>
<td>0,002</td>
</tr>
<tr>
<td>Wechsel Bremsbeläge (Euro/km)</td>
<td>0,006</td>
<td>0,006</td>
</tr>
<tr>
<td>Reifen inkl. Montage (Euro/km)</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>Summe Wartung und Instandhaltung (Euro/km)</td>
<td>0,028</td>
<td>0,023</td>
</tr>
<tr>
<td>Summe Betriebskosten (Euro/km)</td>
<td>0,119–0,147</td>
<td>0,063</td>
</tr>
</tbody>
</table>

Ein standardisiertes Verfahren zur Ermittlung und plastischen Darstellung der TCO und somit eine zuverlässige Lifecycle-Betrachtung kann die Bereitschaft der Nutzer, höhere Anschaffungskosten zu akzeptieren, stärken.

2.2 Wirtschaftliche Geschäftsmodelle

Da der Markt für Elektromobilität allein schon aus Verfügbarkeitsgründen gegenwärtig nicht in relevanter Weise besteht, werden auch spezifische Geschäftsmodelle erst mittel- bis langfristig umgesetzt werden können. Es ist durchaus möglich, dass zukünftig in verschiedenen Phasen unterschiedliche Geschäftsmodelle erprobt und realisiert werden.

103 Die Bundesregierung (2009), S. 2.
Bei den hier vorgestellten Geschäftsmodellen kann allgemein unterschieden werden, ob sie vorrangig den Bereich der Fahrzeugnutzung oder der Fahrzeugversorgung betreffen. In beiden Kernbereichen können strategische Partnerschaften wesentlich zum Erfolg der Konzepte beitragen.

Fahrzeugkauf

Die Ergebnisse der Befragung zeigen, dass die Nutzer bereit sind, im Mittel einen Aufpreis i. H. v. 1.564 Euro für ein Auto mit umweltverträglicher Antriebstechnologie zu zahlen. Eine geschlechtspezifische Unterscheidung zeigt, dass die Werte bei Männern und Frauen auf nahezu identischem Niveau liegen.\(^\text{105}\)

In diesem Zusammenhang ist der Kauf von gebrauchten Fahrzeugen gesondert zu betrachten, da der Umgang mit gebrauchten Batterien bzw. deren Einpreisung zu prüfen ist.

Die hohe Differenz der Anschaffungskosten von Verbrennungsfahrzeugen und Elektrofahrzeugen kann dazu führen, dass zunächst kommerzielle Anbieter (Carsharing-Unternehmen, Vermieter) und Unternehmen (Fahrparks) als Abnehmer von Elektrofahrzeugen auftreten. Dieser Trend lässt sich auch anhand der Ergebnisse einer neuen Studie von Dataforce ableiten.

Demnach wurden in den ersten fünf Monaten des Jahres 2011 insgesamt etwas mehr als 1.000 Elektrofahrzeuge neu zugelassen. Während der Anteil der Privatnutzer bei lediglich 4,9 Prozent lag, wurden 45,4 Prozent der Neuzulassungen in Fahrzeugflotten eingesetzt. Der Anteil der Akteure Autobauer, -handel und -vermieter lag demgegenüber bei 49,7 Prozent.\(^\text{106}\)

Fahrzeugleasing

\(^\text{105}\) ARAL AG (2011).

\(^\text{106}\) Bundesverband eMobilität e. V. (2011), S. 20 f.
Elektromobilität – Normen bringen die Zukunft in Fahrt

Batterieleasing

Batteriewechselsysteme

**Tab. 17 Vor- und Nachteile für Nutzer des Geschäftsmodells „Batterieleasing“.

<table>
<thead>
<tr>
<th>Vorteile</th>
<th>Nachteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittlere Anschaffungskosten</td>
<td>Hohe Betriebskosten</td>
</tr>
<tr>
<td>Eigentum am Fahrzeug</td>
<td>Kein Eigentum an der Batterie</td>
</tr>
<tr>
<td>Risiko der Haltbarkeit der Batterie verbleibt beim Anbieter</td>
<td>Verkaufspreis des Fahrzeugs ohne Batterie u. U. gering bzw. abhängig von Leasingangeboten Dritter</td>
</tr>
<tr>
<td>Hohe Flexibilität</td>
<td>Dauerhafter Stellplatz mit Ladeinfrastruktur benötigt</td>
</tr>
</tbody>
</table>

**Tab. 18 Vor- und Nachteile für Nutzer des Geschäftsmodells „Batterywechselanlagen“.

<table>
<thead>
<tr>
<th>Vorteile</th>
<th>Nachteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittlere Anschaffungskosten</td>
<td>Hohe Betriebskosten</td>
</tr>
<tr>
<td>Eigentum am Fahrzeug</td>
<td>Kein Eigentum an der Batterie</td>
</tr>
<tr>
<td>Risiko der Haltbarkeit der Batterie verbleibt beim Anbieter</td>
<td>Verkaufspreis des Fahrzeugs ohne Batterie u. U. gering bzw. abhängig von Leasingangeboten Dritter</td>
</tr>
<tr>
<td>Hohe Flexibilität</td>
<td>Stellplatz benötigt</td>
</tr>
<tr>
<td>Schneller Batteriewechsel, hohe Reichweiten möglich</td>
<td>Festlegung auf ein Verkehrsmittel/ einen Fahrzeugtyp</td>
</tr>
</tbody>
</table>

Themen wie eine einheitliche Batteriefach-Karosserie-Integration, einheitliche Ausbildungsstandards für das Personal einer solchen Station sowie andere sicherheitsrelevante Aspekte sind Voraussetzungen für die Verbreitung eines solchen Konzepts.

Carsharing

In der Regel ist zur Nutzung des Konzepts eine einmalige Registrierung der Nutzer notwendig. Die Finanzierung ist oftmals eine Kombination aus Anmeldegebühr, monatlicher Grundgebühr und nutzungspezischem Entgelt für Strom, Instandhaltung etc. Das E-Carsharing auch ein relevantes Business-Modell darstellen kann, zeigt nachstehender Exkurs.

Exkurs

Business Case:
„Dynamisiertes E-Carsharing am Frankfurter Flughafen“
Dieses Carsharing-Konzept sieht eine Flotte von Elektrofahrzeugen mit Park- und Ladeflächen am Frankfurter Flughafen sowie an stark frequentierten Orten der Frankfurter Innenstadt vor. Das Kalkulationsmodell bezieht sich auf ein Fahrzeug.

Das Modell aus Kundensicht:

b) Festpreis für die jeweiligen Ziele (im Kalkulationsbeispiel: 5,90 Euro)
c) Optional sind gegen zusätzliches Entgelt längere Nutzungsdauern möglich (nicht im Kalkulationsbeispiel berücksichtigt), was die Attraktivität deutlich steigert.
d) Ab- und Anstecken an die Ladestation markiert Anfang und Ende der Nutzung

Das Modell aus Anbietersicht:

b) Kosten pro elektrisch zurückgelegtem Kilometer betragen etwa zwei Cent.
Bei einem Fahrpreis von 5,90 Euro vom Frankfurter Flughafen in die Innenstadt, muss das Elektrofahrzeug die Strecke im Schnitt circa dreimal am Tag zurücklegen, um die Kosten zu decken. Mindestens drei Nutzer täglich anzusprechen, wäre vom Timing her vorstellbar, berücksichtigt man die getroffenen Annahmen zu den Nutzungszyklen (3-Stunden-Zyklus vom Flughafen und zurück, drei Stunden Aufladen nach der dritten Fahrt). Können die Fixkosten reduziert werden (zum Beispiel über die Erhöhung des Fahrzeugrestwerts nach fünf Jahren, indem man die Batterie teilweise aufbereitet), so verbessert sich der kalkulierte Break-even deutlich. Die folgende Grafik zeigt, dass bei einem Kundenpreis von 5,90 Euro die Anzahl der benötigten Fahrten auf zwei pro Tag sinkt, wenn die Kosten je Fahrzeug auf 20.000 Euro für fünf Jahre reduziert werden können.
Für den Kunden ist das Konzept allein schon aus Kostengründen attraktiv. Man ist individuell mobil, viel günstiger unterwegs als mit dem Taxi und ab zwei Personen sogar billiger als mit den öffentlichen Verkehrsmitteln.

Diese Kalkulation ist zwar sehr einfach aufgebaut, zeigt jedoch, dass das Konzept bei hoher Kundenakzeptanz durchaus finanziell rentabel sein kann. Wichtig ist vor allem, dass mit einer ausreichend großen Flotte von E-Fahrzeugen eine fließende Zirkulation zwischen den Hauptanlaufpunkten der Stadt und dem Flughafen erreicht wird. Drei wichtige Aspekte müssen zusätzlich berücksichtigt werden:

2) Partnerschaften mit Flughafenterrein und Airlines sind für den Erfolg des Konzepts essenziell, da man zahlreiche potenzielle Kunden durch attraktive Kombinationsangebote mit Flügen oder andere Flughafen-Services auf das Konzept aufmerksam machen kann.

Vergleich Carsharing – E-Carsharing:

Kombinierte Modelle
Möglich ist es zudem, Kauf- und Leasingmodelle zu kombinieren. Eine Idee ist, heutige Nachteile von Elektroautos durch zeitweise Miete oder Leasing eines konventionellen Fahrzeugs zu vergünstigen. Im städtischen Raum ist die Reichweite eines Elektroautos schon heutzutage weitgehend ausreichend. Für längere Fahrten (Dienstreisen, Urlaub etc.) werden andere Verkehrsmittel benötigt, um die Entfernungen in einem vernünftigen Zeitrahmen zurückzulegen.

Zweitnutzung von Batterien

Tab. 19 Vor- und Nachteile für Nutzer des Geschäftsmodells „E-Carsharing“.

<table>
<thead>
<tr>
<th>Vorteile</th>
<th>Nachteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine Anschaffungskosten</td>
<td>Vorausschauende Planung/Reservierung erforderlich</td>
</tr>
<tr>
<td>Begrenzte Betriebskosten</td>
<td>Nutzungsgebühr</td>
</tr>
<tr>
<td>Risiko der Haltbarkeit der Batterie</td>
<td>Abhängigkeit vom Angebot in der jeweiligen Region</td>
</tr>
<tr>
<td>Hohe Flexibilität bei der Wahl des Verkehrsmittels</td>
<td>Keinen Überblick über Zustand des Fahrzeugs</td>
</tr>
<tr>
<td>Kein dauerhafter Stellplatz benötigt</td>
<td>Kein Eigentum</td>
</tr>
</tbody>
</table>

110 Frankfurter Rundschau (2011).

- „Resell (Wiederverkauf): Vertrieb der gebrauchten Akkumulatoren an verschiedene Interessenten.
- „Recycle (Wiederverwertung): Umsetzung eines Recycling-Programms für Altbatterien zur Wiedergewinnung der wertvollen Rohstoffe.“

Als Möglichkeiten der Zweitverwertung werden verschiedene Branchenlösungen und insbesondere der Erneuerbare-Energien-Sektor einbezogen.112

Als Möglichkeiten der Zweitverwertung werden verschiedene Branchenlösungen und insbesondere der Erneuerbare-Energien-Sektor einbezogen.112

Bereits in der Normungs-Roadmap wurde eine Vereinheitlichung der Angaben von Leistungsmerkmalen und Diagnosesignalen angesprochen.113

Multimodale Nutzung von Verkehrsmitteln über Mobilitätskarte

In Berlin wird ein solches System temporär von DB Rent, BVG und S-Bahn Berlin im Rahmen des Forschungsprojekts BeMobility über drei Monate getestet. Dabei erwerben Nutzer für einen monatlichen Preis von 78 Euro eine Mobilitätskarte mit der sie den ÖPNV (vollumfänglich), Call-a-Bike und E-Carsharing anhand einer vorgegebenen Zeitspanne nutzen können. Bei Überschreitung der Zeitspannen wird bei Call-a-Bike bei einem jeweiligen Zeitbudget von 30 Minuten pro Fahrt eine Gebühr von 8 Euro pro zusätzlich gefahrenen Minute fällig. Der Carsharing-Anbieter Flinkster rechnet innerhalb des Zeitguthabens von 50 Euro pro Monat lediglich eine Verbrauchserschale, die bspw. für einen Elektro-Smart bis 25 Cent/km liegt, ab.115

Vehicle to Grid (V2G)

111 atzonline.de (2009).
113 NPE (2010), S. 50.
114 NPE (2010), S. 50.
regierung zur deutlichen Steigerung der regenerativen Energieerzeugung in Deutschland ist das V2G-Konzept als ein wesentlicher Baustein zu sehen.

Hausenergiesysteme (Smart Home)

Was wie Zukunftsmusik klingt, ist die Kombination von dezentraler, erneuerbarer Energieversorgung mit modernen Informations- und Kommunikationstechnologien und elektrifizierter Mobilität. Das Haus erzeugt Energie, die unmittelbar an Ort und Stelle verbraucht oder ins Netz eingespeist wird. Gleichzeitig kann die Batterie des Elektrofahrzeugs als mobiler Zwischenspeicher in den Stromkreislauf des Hauses integriert werden.\(^{116}\)

\(^{116}\) Link/Kohrs/Dallinger/Wittwer (2010).

Um Smart Homes flächendeckend zu ermöglichen, müssen zudem intelligente Messzähler (Smart Meters) in großem Maße ausgerollt werden. Diese müssen sich mithilfe von Kommunikationstechnologien zu intelligenten Netzen, den Smart Grids, zusammenschließen. Erst so wird die multidirektionale Kommunikation zwischen Haus, Fahrzeug, Smartphone, Energieverbrauchern bzw. -erzeugern und allen anderen Akteuren der Energiewirtschaft möglich.

Ladeinfrastruktur und Betrieb von Parkflächen

Abb. 49 Schematisches Beispiel für ein Smart Home.

- Verbrauchsdaten und Einspeisemengen werden direkt an Anbieter gesendet
- Anbieter steuert und regelt entsprechend des Bedarfs
- Echtzeitinformationen über Energiebilanz, CO₂-Ausstoß und Kosten über zentrales Steurelement
- Kunde wird Prosumer (Producer & Consumer)
- PV-Anlage und Windrad auf Dach
- Einspeisung des Stroms in zentralisiertes Netz
- Elektroauto wird in der Nacht aufgeladen
- Fahrzeug übernimmt in Zeiten großer Netzlast Brückenfunktion und speist Strom ein (Vehicle to Grid)
- Sämtliche Energieverbraucher und -erzeuger sind vernetzt und werden via Smartphone angesteuert
- Haushaltsgeräte sind vernetzt und werden energieeffizient und ortsunabhängig angesteuert
- Echtezeitinformationen über Energiebilanz, CO₂-Ausstoß und Kosten über zentrales Steurelement
- Elektroauto wird in der Nacht aufgeladen
- Fahrzeug übernimmt in Zeiten großer Netzlast Brückenfunktion und speist Strom ein (Vehicle to Grid)
- Sämtliche Energieverbraucher und -erzeuger sind vernetzt und werden via Smartphone angesteuert
- Haushaltsgeräte sind vernetzt und werden energieeffizient und ortsunabhängig angesteuert

Frankfurter Modell

Als mögliche Standorte für Ladesäulen können zudem u. a. Park-and-ride-Parkplätze oder 2-Rad-Parkplätze genutzt werden. Freischaltung und Abrechnung sind in diesem Fall z. B. über das Handy möglich.

Weitere Geschäftsmodelle
Darüber hinaus sind auch weitere Geschäftsmodelle denkbar, wie beispielsweise die Bereitstellung von Informationen über die nächste Ladestation oder die Wegeoptimierung, Navigationsrouten inkl. Berücksichtigung von Ladeinfrastruktur etc. Ebenfalls kann eine Differenzierung der Ladeinfrastruktur (Normalladung und Schnellladung) spezifische Geschäftsmodelle hervorrufen.

2.3 Strategische Partnerschaften

Die folgende Übersicht zeigt Beispiele für neue Allianzen von Unternehmen unterschiedlicher Branchen.

Frankreich – Deutschland

Tab. 21 Beispiele für strategische Partnerschaften in der Elektromobilität.

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Unternehmen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batterie</td>
<td>Daimler (D)/Evonik (D)</td>
</tr>
<tr>
<td></td>
<td>Bosch (D)/Samsung (KR)</td>
</tr>
<tr>
<td></td>
<td>Daimler (D)/Tesla (US)</td>
</tr>
<tr>
<td></td>
<td>BMW (D)/A123 (US)</td>
</tr>
<tr>
<td>Leichtbau</td>
<td>Evonik (D)/RWTH Aachen (D)/Johnson Controls (US)</td>
</tr>
<tr>
<td></td>
<td>BMW (D)/SGL Carbon (D)</td>
</tr>
<tr>
<td>IKT</td>
<td>EWE (D)/Karmann (D)</td>
</tr>
<tr>
<td></td>
<td>Siemens (D)/Vodafone (UK)</td>
</tr>
<tr>
<td></td>
<td>BMW (D)/My City Way (US)</td>
</tr>
<tr>
<td>Automobilproduktion</td>
<td>RWE (D)/Renault (FR)/Nissan (JP)</td>
</tr>
<tr>
<td></td>
<td>Daimler (D)/BYD (CN)</td>
</tr>
<tr>
<td></td>
<td>BMW (D)/Brillianz (CN)</td>
</tr>
<tr>
<td></td>
<td>BMW (D)/Peugeot (FR)</td>
</tr>
</tbody>
</table>

122 NPE (2010), S. 11.
123 Fojcik/Schwarz (2010), S. 10.
125 DIN Deutsches Institut für Normung e. V. (2009), S. 48.
126 FAZ (2010).
127 FAZ (2011).
Großbritannien – Deutschland
Im Rahmen des Projekts HARZ.EE-Mobility wird die Nutzung regional erzeugter Energien für Elektrofahrzeuge und deren Einbindung in das Smart Grid untersucht. In verschiedenen Bereichen arbeiten Hochschulen und Unternehmen an der Umsetzung des Projekts. Siemens und Vodafone bedienen den Bereich der IKT-Technologie.129

USA – Deutschland

China – Deutschland

Japan – Deutschland

Korea – Deutschland

129 Siemens AG (2009).
130 Daimler steigt bei Elektroauto-Pionier Tesla ein (2009).
131 focus.de (2011).
133 BMBF (2010), S. 7.
134 FAZ.NET (2009).
135 Daimler (2010).
136 CleanThinking.de (2011).
137 Handelsblatt (2009).
III. Recht

Um die Elektromobilität zu fördern, werden derzeit verkehrsrechtliche Anreizmaßnahmen diskutiert. Hierzu gehören beispielsweise die Beworrrechtigung von Elektrofahrzeugen beim Parken und die Erlaubnis der Nutzung von Busspuren.139 Bei diesen Aspekten sind vorab eine Vielzahl von rechtlichen Fragestellungen zu klären.

Der Datenschutz ist ein wichtiger Aspekt bei der Kommunikation zwischen den Nutzern, dem Fahrzeug, der (Lade-)Infrastruktur und den abrechnenden Unternehmen. Hierbei werden eine Vielzahl von Daten ausgetauscht, darunter auch personenbezogene Daten, die einer besonderen Sensibilität unterliegen.

3.1 Verkehrsraumgestaltung

Rechtliche Zuständigkeiten und bauliche Integration

139 NPE (2011) S. 7.
141 Bachmann/Mayer (2011).
Im Straßengesetz des Landes Hessen heißt es exemplarisch: „Bei der Errichtung und bei dem Betrieb der Sondernutzungsanlage hat der Erlaubnisnehmer die anerkannten Regeln der Technik zu beachten. [...]“ (§ 16 (4) HStrG vom 08.06.2003). Um dieser rechtlichen Anforderung nachkommen zu können, müssen sowohl der beantragten Bauﬁrma als auch dem späteren Betreiber entsprechende Vorgaben zur baulichen Integration der Ladeinfrastruktur (u. a. Barrierefreiheit) und zum Betrieb auferlegt werden. Dies soll sowohl für die Nutzer als auch für die Energieversorgungsunternehmen einen möglichst barriere- und diskriminierungsfreien Zugang ermöglichen. Zugleich sollen die Mindestanforderungen von Normen und Standards nicht so ausgestaltet werden, dass einzelne Geschäftsmodelle ausgeschlossen werden.142

Unfallgefahren und Haftung beim elektrischen Laden im öffentlichen Raum

Auf europäischer und internationaler Ebene divergiert die rechtliche Situation bzgl. der elektrischen Installation im öffentlichen Raum sehr stark und lässt sich nicht allgemeingültig darstellen. Der Schwerpunkt liegt in der vorliegenden Betrachtung daher auf Deutschland.

Die Betreiber der Anlagen müssen sich mit einem relativ breiten Spektrum an Sicherheitsanforderungen auseinander setzen. Tabelle 22 zeigt die Sicherheitsaspekte beim Ladevorgang im Allgemeinen anhand von Beispielen:

<table>
<thead>
<tr>
<th>Sicherheitsaspekt</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrische Sicherheit</td>
<td>Elektrischer Schlag</td>
</tr>
<tr>
<td>Elektromagnetische Verträglichkeit</td>
<td>Störfestigkeit, Störaussendung</td>
</tr>
<tr>
<td>Bauliche Sicherheit</td>
<td>Bauliche Integration der Ladeinfrastruktur</td>
</tr>
<tr>
<td>Funktionaler Sicherheit</td>
<td>Zuverlässigkeit aktiver Sicherheitssysteme</td>
</tr>
<tr>
<td>Datenschutz</td>
<td>Schutz der personenbezogenen Daten</td>
</tr>
</tbody>
</table>

142 NPE (2011), S. 42.
3.2 Fahrzeugsicherheit

Die sicherheitstechnischen Anforderungen an die Elektrofahrzeuge lassen sich in ähnlicher Weise zusammenstellen, wie dies bei der Ladeinfrastruktur vorgenommen wurde. Tabelle 23 zeigt die Kernaspekte, die bei der Betrachtung möglicher Gefahrenquellen relevant sein können.

Tabelle 23 Sicherheitstechnische Anforderungen an Elektrofahrzeuge mit Beispielen.

<table>
<thead>
<tr>
<th>Sicherheitsaspekt</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrische Sicherheit</td>
<td></td>
</tr>
<tr>
<td>Elektromagnetische Verträglichkeit</td>
<td>Störfestigkeit, Störaussendung</td>
</tr>
<tr>
<td>Funktionale Sicherheit</td>
<td>Zuverlässigkeit aktiver Sicherheitssysteme</td>
</tr>
<tr>
<td>Akustische Wahrnehmung</td>
<td>Lautloses Fahren</td>
</tr>
</tbody>
</table>

Erhöhte Unfallgefahr durch geringe Geräuschemission

Die UNECE Working Party on Noise hat Anfang 2011 eine Empfehlung zur Verwendung von Geräuschemittleren, die auch von den Automobilverbänden mitgetragen wird, abgegeben. Es wird empfohlen, dass Elektrofahrzeuge bis zu einer Geschwindigkeit von 20 km/h ein Gerät dafür verwenden, bei denen sich Verkehrsteilnehmer vornehmlich akustisch orientieren.149

143 Klindt (2011).
145 U.S. Department of Transportation (2009).
146 Sandberg/Goubert/Mioduszewski (2010).
147 Hogan (2009).
3.3 Bevorrechtigung

Parken von Elektrofahrzeugen im öffentlichen Raum

Um den Bedarf an Ladeinfrastruktur im öffentlichen Raum zu ermitteln, wurde von der FH-Frankfurt im Rahmen des Projektes „Elektrolöwe 2010 – der hessische Elektroautofahrer (Nachhaltigkeitsstrategie Hessen)“ die private Stellplatzverfügbarkeit u. a. in Frankfurt und Kassel anhand der SrV-Daten von 2008 ermittelt. Die Grafiken 50 und 51 zeigen die private Stellplatzverfügbarkeit in Frankfurt am Main und Kassel sowie den Anteil der abgestellten Fahrzeuge im öffentlichen Raum.

Die Analyse zeigt, dass in Frankfurt am Main 55 Prozent und in Kassel 69,5 Prozent der Befragten über einen privaten Stellplatz bzw. über einen Carport oder eine Garage verfügen. In Frankfurt stellen 42,6 Prozent und in Kassel 27,6 Prozent der Befragten ihre Fahrzeuge im Straßenraum ab. Die verbleibenden Anteile von 2,4 Prozent in Frankfurt und 2,9 Prozent in Kassel stellen ihr Fahrzeug an unterschiedlichen Standorten ab.

Während der Wert von Kassel aufgrund der räumlichen und städtebaulichen Struktur des Untersuchungsgebietes wenig überraschend ist, ist der Wert von Frankfurt am Main mit zum Teil hochverdichteten Stadträumen umso überraschender.

Abb. 50 Verteilung des ruhenden Verkehrs in Frankfurt am Main (n = 1.691).

<table>
<thead>
<tr>
<th>Öffentlicher Straßenraum</th>
<th>42,6 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garage/Carport/privater Stellplatz</td>
<td>55 %</td>
</tr>
</tbody>
</table>

Abb. 51 Verteilung des ruhenden Verkehrs in Kassel (n = 1.006).

<table>
<thead>
<tr>
<th>Öffentlicher Straßenraum</th>
<th>27,6 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garage/Carport/privater Stellplatz</td>
<td>69,5 %</td>
</tr>
</tbody>
</table>

\(^{150}\) PwC, Fraunhofer IAO (2010), S. 12.

Die Tabelle 24 gibt exemplarisch Aufschluss über Parkerleichterungen in verschiedenen Ländern. Da sich die Rahmenbedingungen gewöhnlich schnell verändern, ist dies nur eine Momentaufnahme.

<table>
<thead>
<tr>
<th>Land</th>
<th>Maßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Großbritannien</td>
<td>Kostenlose Parkstände in der Innenstadt und Stellplätze in Parkhäusern (auslaufend), z. T. kostenloses Laden in Parkhäusern</td>
</tr>
<tr>
<td>Irland</td>
<td>Kostenfreie Parkstände</td>
</tr>
<tr>
<td>Frankreich</td>
<td>Kostenfreie Parkstände</td>
</tr>
<tr>
<td>Italien</td>
<td>Kostenfreie Parkstände und kostenloses Laden in ausgewählten Städten</td>
</tr>
<tr>
<td>Norwegen</td>
<td>Kostenfreies Parken an ausgewiesenen Stellen</td>
</tr>
<tr>
<td>Uruguay</td>
<td>Kostenfreie Parkstände in der Landeshauptstadt Montevideo</td>
</tr>
<tr>
<td>Vereinigte Staaten</td>
<td>Bevorzugtes Parken von Elektro-Pkw an ausgewiesenen Stellen</td>
</tr>
</tbody>
</table>

151 Williams (2008).
Parkentgelte und -gebühren im internationalen Vergleich

152 Schäfer (2007).
Nutzung von Bussonderfahrstreifen

Busspuren werden im öffentlichen Straßenraum durch das Zeichen 245 der Allgemeinen Verwaltungsschrift zur Straßenverkehrsordnung (VwV-StVO) ausgewiesen. In den Anmerkungen zu diesem Zeichen nach § 41 StVO heißt es: „Der Sonderfahrstreifen soll im Interesse der Sicherheit oder Ordnung des Verkehrs Störungen des Linienverkehrs vermeiden und einen geordneten und zügigen Betriebsablauf ermöglichen. Er ist damit geeignet, den öffentlichen Personenverkehr gegenüber dem Individualverkehr zu fördern [...]“. Mit Zusatzschildern ist es möglich, sowohl Taxis als auch Fahrradfahrern die Nutzung zu gestatten. Für Bussonderfahrstreifen können spezielle Lichtzeichenanlagen eingesetzt werden, jedoch nur, wenn der Radverkehr nicht mitgeführt oder für ihn eigene Lichtzeichenanlagen installiert werden. Taxen führt oder für ihn eigene Lichtzeichen - nur, wenn der Radverkehr nicht mitgefahren wird. In Deutschland wäre perspektivisch eine Anpassung der rechtlichen Regelungen für den Umweltschutz mit der „Copenhagen Accord“, eine politische Vereinbarung. Dieser hat sich an die speziellen Lichtzeichenanlagen halten (zu § 41 StVO in VVw-StVO).

Die Nutzung von Busspuren oder die Einrichtung von Sonderfahrstreifen ist im europäischen und internationalen Ausland ein gebräuchliches Mittel zur Förderung der Elektromobilität. Besondere Vorreiter sind die USA und Portugal, die sich auch durch nichtmonetäre Anreize vordergleichen Positionen bei der Elektromobilität gesichert haben. Allerdings kann nicht davon ausgegangen werden, dass sie die wichtigsten Treiber für Elektromobilität sein werden, da sie aus Sicht der Nutzer zwar als gut angesehen, aber nicht als entscheidend bewertet werden.

3.4 Umweltrecht

Internationale Klimaschutzziele

154 Williams (2008).
156 PwC, Fraunhofer IAO (2010), S. 12.

Luftreinhalte- und Lärm-Minderungspläne der Europäischen Gemeinschaft

Um die Möglichkeiten der Elektromobilität zur Erreichung einer besseren Luftqualität und zur Reduzierung des Lärms einordnen zu können, sind die rechtlichen Rahmenbedingungen zu klären. Hierzu werden im Folgenden die Umweltgesetzgebung der Europäischen Gemeinschaft hinsichtlich der Luftreinhaltung und der Lärmtherapie sowie die nationale Umsetzung der verabschiedeten EG-Richtlinien in Deutschland erläutert.

Tab. 27 Schadstoffgruppen und Plaketten nach dem Anhang 2 der 35. Bundesimmissionsschutzverordnung

<table>
<thead>
<tr>
<th>Feinstaubgruppe</th>
<th>Einschränkungen</th>
<th>Plakette</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alte Diesel oder Benzinfahrzeuge ohne geregelten Katalysator</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>Bestimmte Fahrzeuge mit Dieselmotor</td>
<td>rot</td>
</tr>
<tr>
<td>3</td>
<td>Bestimmte Fahrzeuge mit Dieselmotor, Diesel PM1 (Partikelreduktionsstufe)</td>
<td>gelb</td>
</tr>
<tr>
<td>4</td>
<td>Benzin mit geregeltem Katalysator, Fahrzeuge mit Flüssiggas-, Erdgas- und Ethanolantrieb, bestimmte Dieselfahrzeuge ohne Partikelfilter, Dieselfahrzeuge mit Partikelfilter</td>
<td>grün</td>
</tr>
</tbody>
</table>

Die Bundesregierung plant im Rahmen der neuen 40. Bundesimmissionsschutzverordnung die Einführung einer blauen Plakette. Diese soll weitestgehend emissionslose Fahrzeuge im Straßenverkehr identifizierbar machen und somit die Kontrolle der Zulässigkeit von Straßenverkehrsrechtlichen Privilegien (Nutzung von Busspuren, kostenfreies Parken etc.) vereinfachen.160

- Ballungsräume mit mehr als 250.000 Einwohnern
- Hauptverkehrsstraßen mit einem Verkehrsaufkommen von mehr als sechs Millionen Kraftfahrzeugen pro Jahr
- Haupteisenbahnstrecken mit einem Verkehrsaufkommen von mehr als 60.000 Zügen pro Jahr und
- Großflughäfen mit einem Verkehrs aufkommen von mehr als 50.000 Bewegungen pro Jahr

Die zweite Stufe besagt, dass die Lärmkartierung bis 30. Juni 2012 und die Lärmaktionsplanung bis 18. Juli 2013 erweitert werden muss. Dies bezieht sich auf die folgenden Gebiete:

- Ballungsräume mit mehr als 100.000 Einwohnern
- Hauptverkehrsstraßen mit einem Verkehrsaufkommen von mehr als drei Millionen Kraftfahrzeugen pro Jahr
- Haupteisenbahnstrecken mit einem Verkehrsaufkommen von mehr als 30.000 Zügen pro Jahr und
- Großflughäfen mit einem Verkehrs aufkommen von mehr als 50.000 Bewegungen pro Jahr161

Sowohl für die Luftreinhaltung als auch für die Lärmreduktion kann die Elektromobilität ein Baustein sein, um die gesetzten Ziele schneller zu erreichen und die betroffenen Bürger schneller zu entlasten. Dies gilt nur unter der Voraussetzung, dass sie selbst nachhaltig betrieben wird und somit auch keine überlokalen negativen Umweleffekte verursacht. Durch entsprechende Prüf- und Qualitätsnormen für Fahrzeuge, die Infrastruktur etc. könnte dies sichergestellt werden.

\textit{Möglicher Beitrag von Elektrofahrzeugen zum Schutz der Umwelt}

160 Die Bundesregierung (2011), S. 50.

161 Umweltbundesamt (2011).

Der Vergleich zeigt die hohen Potenziale der CO₂-Einsparung bei der Verwendung von Strom aus erneuerbaren Energien gegenüber fossil betriebenen Fahrzeugen. Ebenso ist ersichtlich, dass Elektro-Pkw, die mit Strom aus dem derzeitigen Strommix betrieben werden, kaum Potenziale für die Reduzierung der CO₂-Emissionen aufweisen. Dies bestätigt, dass für eine nachhaltige Entwicklung der Elektromobilität auch der Ausbau der erneuerbaren Energien vorangetrieben werden sollte.

Tab. 29 Umweltauswirkungen des Straßenverkehrs.

<table>
<thead>
<tr>
<th>Medium</th>
<th>Emission und Einwirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luft</td>
<td>Abgase, Aerosole, Partikel (z.B. CO₂, CO, NOx, N₂O, NMVOC, SO₂, PM₁₀, PM₁₅) und Lärm</td>
</tr>
<tr>
<td>Wasser</td>
<td>Auslaufende Treib- und sonstige Betriebsstoffe, Abschwämmung von Luftschadstoffen</td>
</tr>
<tr>
<td>Boden</td>
<td>Ablagerung von Luftschadstoffen</td>
</tr>
</tbody>
</table>

Abb. 52 CO₂-Emissionen von Pkw.

<table>
<thead>
<tr>
<th></th>
<th>Durchschnitt Neuwagenflotte</th>
<th>Effizienter Diesel</th>
<th>Elektro-Pkw mit deutschem Strommix</th>
<th>Elektro-Pkw mit Regenerativstrom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quelle: BMU (2011).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.5 Datenschutz

Zusammenfassend betrachtet, kann das heutige Datenschutzrecht die neuen Anforderungen der Elektromobilität in Teilen nicht abdecken, da sich die Anwendungsfälle im Vergleich zum Telekommunikationsmarkt und der konventionellen Stromabrechnung im Haushalt in einigen Aspekten unterscheiden. Aus diesem Grund sieht das KIT den folgenden Handlungsbedarf zur Anpassung des „Bundesdatenschutzgesetzes“:163

- Anpassung hinsichtlich der Festlegung des Zeitpunktes der Daten speicherung von Messwerten am Ladepunkt
- Anpassung der Vorschriften hinsichtlich einer bereichsspezifischen Legitimation oder einer vereinfachten elektronischen Einwilligung, analog zum Telemediengesetz, vor dem Ladevorgang
- Bei Einsatz einer Clearingstelle (z. B. für internationales Roaming) soll für diese eine bereichsspezifische Regelung getroffen werden, welche die Datenübermittlung zwischen den Akteuren legitimiert
- Festlegung einer bereichsspezifischen Granularität164 und der zulässigen Empfänger der mobilitätsbezogenen Abrechnungsdaten der Nutzer
- Generierung temporärer Identifikationsnummern und Einsatz von Ticketing-Verfahren
- Vermeidung der Übermittlung eines (mittelbaren) Ortsbezugs
- Eichrechtliche Verpflichtungen sollen durch vertrauenswürdige dritte Instanzen („Trusted Third Party“) und durch Nutzung von temporären Pseudonymen sichergestellt werden
- Gewährleistung der Datensicherheit beim Unfall

162 Der Bundesbeauftragte für Datenschutz und Informationsfreiheit (2011).
163 Karlsruher Institut für Technologie (2011), S. 44 ff.
164 Granularität beschreibt hier die Feinteiligkeit des Abrechnungsmodells. Diese greift insbesondere bei dynamischen Abrechnungsmodellen in Smart Grid.
D Ganzheitliche Analyse der sozioökonomischen Bereiche unter Berücksichtigung der relevanten Sekundärliteratur

3.6 Eichrecht

Abb. 53 Vereinfachte Übersicht über relevante eichrechtliche Vorschriften im Bereich Elektromobilität.

<table>
<thead>
<tr>
<th>Innerstaatlich geltendes Recht</th>
<th>Europäische Richtlinie (RL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eichgesetz</td>
<td>MID RL über Messgeräte 2004/22/EG</td>
</tr>
<tr>
<td>Eichordnung – Allgemeine Vorschriften</td>
<td>MID Anhang I Allgemeine Vorschriften</td>
</tr>
<tr>
<td>Anlagen zur Eichordnung Anlage 20 Messgeräte für Elektrizität</td>
<td>MID Anlage M 1-003 Elektrizitätszähler für Wirkverbrauch</td>
</tr>
</tbody>
</table>
Für jedes Messgerät ist eine amtliche Eichung seitens der Landesbehörden der Physikalisch-Technischen Bundesanstalt erforderlich. Dabei erfolgt entweder eine Erstechung oder eine Nacheichung. Für die Erstechung muss der zu eichende Zähler den zum Zeitpunkt der ersten Eichung geltenden Anforderungen entsprechen. Dies bedeutet, dass der Zähler die Bauartzulassung erhalten haben muss und zusätzlich folgende Angaben auf dem Gerät angebracht sein müssen:
• Name des Zulassungsinhabers oder sein Firmenname
• Fabriknummer des Gerätes
• Baujahr
• Ableseeinheit mit Namen der Einheiten
• Nennfrequenz, Nennstromstärke und Nennspannung
• Zählerart sowie Bauartbezeichnung des Herstellers
• Anzahl der Läuferumdrehungen
• Schaltplan oder Schaltungsnummer
• CE-Kennzeichnung und Meteorologie-Kennzeichen

Sofern diese Vorgaben auch bei mobilen Messgeräten eingehalten werden, spricht aus Sicht des Eichwesens nichts gegen einen Einsatz im Fahrzeug selbst.

IV. Politik

4.1 Zuständigkeit der Ministerien

Bundesebene

Im Nationalen Entwicklungsplan Elektromobilität wird die Zuständigkeit für das Thema Elektromobilität den vier Bundesministerien für Verkehr, Bau und Stadtentwicklung (BMVBS), für Umwelt, Naturschutz und Reaktorsicherheit (BMU), für Wirtschaft und Technologie (BMWi) und für Bildung und Forschung (BMBF) zugeschrieben. Um das Know-how der Ministerien effizient zu nutzen, wird in einigen Fällen eine Kooperation der Ministerien durchgeführt bzw. angestrebt. So haben das BMVBS und das BMWi im Jahr 2010 gemeinsam die Geschäftsstelle Elektromobilität der Bundesregierung gegründet. Während der Sitz der neuen Geschäftsstelle das BMWi ist, wird diese vom BMVBS geleitet. Die Geschäftsstelle ist u. a. für die NPE zuständig.

Das BMF fördert insbesondere Projekte im Bereich der Lithium-Ionen-Batterien mit einem Volumen von insgesamt 60 Millionen Euro. Im Rahmen der Innovationsallianz Lithium-Ionen-Batterie LIB 2015 von Vertretern aus Wirtschaft und Wissenschaft tragen die Industrieunternehmen EVONIK, BASF, BOSCH, LiTec und VW weitere 360 Millionen Euro zur erfolgreichen Umsetzung des Projektes bei.

Landesebene

Europa

166 Die Bundesregierung (2009).
167 BMWI, BMVBS, BMU, BMBF, BMELV (2009).
168 BMU (2009).
4.2 Politische Motivation und Fördermaßnahmen im internationalen Kontext

Dementsprechend haben Länder wie z.B. Frankreich oder Großbritannien bereits umfangreiche Maßnahmen der monetären Absatzförderung eingeleitet:

Abb. 54 Einstellung der Nutzer zur Subventionierung von Elektroautos.

Quelle: BITKOM (2010).

172 Welt-Online (2011).
174 BMU (2011).
175 Fojcik/Schwarz (2010), S. 7.
176 BITKOM (2010).
177 DEKRA e.V. (2011)
Die Definition bei der Förderung der spezifischen Antriebstechnologie ist unterschiedlich geregelt. Im Rahmen des Projekts colognE-mobil wurde eine Expertenbefragung zu regulativen Maßnahmen zur Förderung der Elektromobilität im Zeitraum 2010 bis 2020 durchgeführt. Ein Ergebnis ist die Erwartung an die Wahrung der Technologienopenheit bei der Vergabe und Strukturierung von Fördermaßnahmen.178

Im Folgenden werden die Programme und Fördermaßnahmen einiger ausgewählter Länder vergleichend gegenübergestellt.

Deutschland

178 Fojcik/Schwarz (2010), S. 10.
179 Die Bundesregierung (2011).

Tab. 31 Beispiele zu Maßnahmen der Absatzförderung in ausgewählten Ländern.

<table>
<thead>
<tr>
<th>Absatzförderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deutschland</td>
</tr>
<tr>
<td>Kfz-Steuerbefreiung in den ersten fünf bis zehn Jahren, Auswirkungen der Dienstwagenbesteuerung von Elektrofahrzeugen analog zu Verbrennungsfahrzeugen geplant</td>
</tr>
<tr>
<td>Estland</td>
</tr>
<tr>
<td>Förderung des Kaufs von Elektroautos mit bis zu 18.000 Euro in Form von vergünstigten Einzelkrediten für einen bestimmten Personenkreis</td>
</tr>
<tr>
<td>Frankreich</td>
</tr>
<tr>
<td>Bis zu 5.000 Euro Umweltprämie</td>
</tr>
<tr>
<td>UK</td>
</tr>
<tr>
<td>Zuschuss in Höhe von 5.000 Pfund (ca. 5.700 Euro)1 beim Kauf eines Elektrofahrzeugs, Befreiung von der Kfz-Steuer für privat genutzte Elektroautos, Unternehmen werden infolge der Anschaffung eines Elektroautos für fünf Jahre von der Unternehmenskraftfahrzeugsteuer berufen</td>
</tr>
<tr>
<td>USA</td>
</tr>
<tr>
<td>7.500 US-Dollar (ca. 5.400 Euro)1 sind infolge des Kaufes eines Elektroautos bei der Einkommenssteuer anrechnungsfähig, auf regionaler Ebene Zuschüsse von bis zu 5.000 US-Dollar (ca. 3.600 Euro)1 möglich</td>
</tr>
<tr>
<td>China</td>
</tr>
<tr>
<td>50.000 Renminbi (ca. 5.700 Euro)1 für PHEV und maximal 60.000 Renminbi (ca. 6.800 Euro)1 für reine Elektrofahrzeuge, auf regionaler Ebene zusätzliche Förderung möglich (Bsp. Shenzen: elektrisch betriebene Fahrzeuge i.H.v. 6.600 Euro)1 und Hybridfahrzeuge i.H.v. 20.000 Renminbi (ca. 2.300 Euro)1</td>
</tr>
<tr>
<td>Japan</td>
</tr>
<tr>
<td>Höhe der Förderung regional unterschiedlich, Unterstützung durch Kommunen bis zu 4.000 Euro; Befreiung oder Reduzierung der Erwerbs- und Tonnagesteuer</td>
</tr>
<tr>
<td>Korea</td>
</tr>
<tr>
<td>Steuervorteile i.H.v. bis zu 3,1 Millionen WON (ca. 2.000 Euro)1 für Hybridfahrzeuge</td>
</tr>
</tbody>
</table>

1 Wechselkurs zum 20. Oktober 2011
Um die Nutzung der Elektromobilität und damit die Marktseite weiter zu stärken, wurden weitgehende Befreiungen von der Kfz-Steuer und Anpassungen in der Dienstwagenbesteuerung beschlossen. Zudem bieten die Freigabe von Busspuren, die Errichtung von Sonderparkplätzen sowie die Errichtung von Sonderfahrspuren weitere Anreize zum Umstieg auf elektrisch betriebene Fahrzeuge.

Im zweiten Bericht der NPE wird eine mögliche Auswahl an Themenfeldern und eine entsprechende Bedarfsplanung vorgestellt. Daraus folgt allein für die Umsetzung der oben angesprochenen Leuchttürme ein Finanzbedarf von etwa 4 Milliarden Euro.180, 181

Innerhalb des Berichts der AG 4 der NPE wird die Anwendung des AC-Ladesteckers Typ 2 (IEC 62196-2) empfohlen. Für die DC-Ladung ist derzeit lediglich der Combo-Ladesystem geplant.182

Estland

Zusätzlich erhalten die Bürger die Möglichkeit, eine Subvention i. H. v. bis zu 1.000 Euro für den Aufbau einer privaten Ladestation zu beantragen.185

Frankreich

Des Weiteren existieren substanzielle Investitionen in diverse Forschungsprogramme, z. B. für die Entwicklung von Mobilitätskonzepten.

Ein wichtiger in dem „Grenelle Environnement“ genannter Aspekt ist der Aufbau einer flächendeckenden Ladeinfrastruktur. Um die Versorgung mit Strom zu gewährleisten, haben verschiedene Gebietskörperschaften und Wirtschafts-

180 NPE (2011).
181 Welt-Online (2011).
182 NPE (2010 (2), S. 4,5.
183 Kallas (2011).
185 oekonews.at (2011).
186 Kallas (2011).

Tab. 32 Bonus/Malus System in Frankreich.

<table>
<thead>
<tr>
<th>Emissionen CO₂/km</th>
<th>Bonus (Euro)</th>
<th>Emissionen CO₂/km</th>
<th>Malus (Euro)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤60 g</td>
<td>5.000</td>
<td>151≤155 g</td>
<td>200</td>
</tr>
<tr>
<td>61≤90 g</td>
<td>800</td>
<td>156≤190 g</td>
<td>750</td>
</tr>
<tr>
<td>91≤110 g</td>
<td>400</td>
<td>191≤240 g</td>
<td>1.600</td>
</tr>
<tr>
<td>111≤150 g</td>
<td>0</td>
<td>≥241 g</td>
<td>2.600</td>
</tr>
</tbody>
</table>

Tab. 33 Entwicklung der Anzahl an Ladestationen und der korrespondierenden Kosten in den 25 größten Agglomerationen Frankreichs.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Anzahl Ladestationen in T</th>
<th>Kosten in T€</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>7</td>
<td>45.000</td>
</tr>
<tr>
<td>2015</td>
<td>44</td>
<td>303.000</td>
</tr>
<tr>
<td>2020</td>
<td>150</td>
<td>1.051.000</td>
</tr>
</tbody>
</table>

189 Negre (2011).
Großbritannien

Tab. 34 Förderung der Elektromobilität in Großbritannien.

<table>
<thead>
<tr>
<th>Anreize</th>
<th>Finanziell</th>
<th>Nicht-Finanziell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertigung/F&E Investitionen</td>
<td>350 Millionen Pfund (ca. 401 Millionen Euro) für Forschungs- und Demonstrationsprojekte</td>
<td>x</td>
</tr>
<tr>
<td>Infrastrukturinvestitionen</td>
<td>Geplantes 20 Millionen Pfund (ca. 23 Millionen Euro) Programm um 25.000 Ladesäulen in London aufzustellen</td>
<td>x</td>
</tr>
<tr>
<td>Fahrzeugkauf</td>
<td>Befreiung von der Kraftfahrzeugsteuer für privat genutzte Elektroautos</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Unternehmen werden infolge der Anschaffung eines Elektroautos für fünf Jahre von der Unternehmenskraftfahrzeugsteuer berfreit</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Ab 2011 wird der Kauf eines Hybrid-/Elektrofahrzeugs i. H.v. 25 Prozent des Listenpreises bis zu einem Maximum von 5.000 Pfund (ca. 5.700 Euro) vom Staat gefördert. Das Gesamtvolumen der Maßnahme liegt bei 230 Millionen Pfund (ca. 264 Millionen Euro)</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Elektrofahrzeuge sind von der Zahlung der City-Maut befreit</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Geplante Errichtung von reservierten Parkplätzen für elektrische Fahrzeuge</td>
<td>x</td>
</tr>
</tbody>
</table>

1 Wechselkurs zum 20. Oktober 2011

USA

- 1,5 Milliarden US-Dollar Zuschüsse für in den USA ansässige Hersteller, um Batterien zu produzieren und Recyclingverfahren zu entwickeln
- 500 Millionen US-Dollar Zuschüsse für in den USA ansässige Hersteller, um Komponenten des elektrischen Antriebsstrangs zu produzieren

Elektromobilität – Normen bringen die Zukunft in Fahrt

Ganzheitliche Analyse der sozioökonomischen Bereiche unter Berücksichtigung der relevanten Sekundärliteratur

China

Während das Programm „863“ hauptsächlich darauf ausgerichtet war, staatliche Fahrzeugflotten in den beteiligten Städten zu implementieren, wurde mittels einer neuen Initiative

Tab. 35 Förderung der Elektromobilität in den USA.

<table>
<thead>
<tr>
<th>Anreize</th>
<th>Finanziell</th>
<th>Nicht-Finanziell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertigung/F&É Investitionen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4 Milliarden US-Dollar (ca. 1,7 Milliarden Euro) für F&E Entwicklung im Bereich elektrisch betriebener Fahrzeuge</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Infrastrukturinvestitionen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400 Millionen US-Dollar (ca. 290 Millionen Euro) für Demonstrations- und Evaluationsprojekte</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>54 Millionen (ca. 39 Millionen Euro) US-Dollar Steuervorteile zur Förderung einer alternativen Ladeinfrastruktur</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>100 Millionen US-Dollar (ca. 72 Millionen Euro) Unterstützung des „5-City Electric Vehicle Project“</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Fahrzeugkauf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.500 US-Dollar (ca. 5.400 Euro) Steuervorteile beim Kauf eines neuen Hybride- oder Elektrofahrzeugs</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Zusätzliche Kaufanreize auf regionaler Ebene von bis zu 5.000 US-Dollar (ca. 3.600 Euro)<sup>196</sup></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Viele Regionen bieten Nutzern die Nutzung eigener Fahrspeere und/ oder eigener Parkräume an</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

¹ Wechselkurs zum 20. Oktober 2011

¹⁹⁶ Handselzeitung (2010).
der Schwerpunkt auf private Nutzer gelegt. Im Jahr 2010 wurde in fünf Städten eine Unterstützung der Regierung von maximal 50.000 Renminbi (ca. 5.700 Euro) für PHEV und maximal 60.000 Renminbi (ca. 6.800 Euro) für reine Elektrofahrzeuge eingeführt. In einigen Städten werden die Maßnahmen der Regierung durch regionale staatliche Maßnahmen ergänzt. So profitieren Privatnutzer bspw. in Shenzhen von einer zusätzlichen Förderung für rein elektrisch betriebene Fahrzeuge i. H. v. 60.000 Renminbi (ca. 6.800 Euro) und für Hybridfahrzeuge i. H. v. 20.000 Renminbi (ca. 2.300 Euro).

Japan

Der Plan enthält allgemeine Handlungs- empfehlungen für Akteure im Bereich Elektromobilität (Industrie, Nutzer) im mittel- und langfristigen Zeitraum. METI hat diesbezüglich sechs Teilpläne erarbeitet, die sich wie folgt darstellen:

- Der Erarbeitung und Anwendung international gültiger Standards wird innerhalb der Strategie hohe Priorität zugemessen. Insbesondere diesbezügliche Aktivitäten in den Bereichen Ladeverbindungssysteme und Batterie sollen möglichst kurzfristig umgesetzt werden.

Quelle: Aus verschiedenen offiziellen Dokumenten zusammengestellt.

Abb. 56 Politische Förderung der Elektromobilität in China im Zeitablauf.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Maßnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>„863“ Programm – Electric Vehicle Special Project</td>
</tr>
<tr>
<td>2004</td>
<td>The Policy on Development of Automobile Industry</td>
</tr>
<tr>
<td>2006</td>
<td>863 New Energy and Energy Saving Project</td>
</tr>
<tr>
<td>2007</td>
<td>Administration Provisions on Access of New Energy Vehicles Manufacturers</td>
</tr>
<tr>
<td>2008</td>
<td>Fuel Tax Adjustment</td>
</tr>
<tr>
<td>2010</td>
<td>Subsidy Standards for Private Purchase of New Energy Vehicle</td>
</tr>
</tbody>
</table>

Damit wird Deutschland im Bereich der Elektromobilität angeglichen, der politische Führungsbereich und die Automobilindustrie auf der gleichen Seite stehen. Derzeit gibt es in Deutschland keine politischen Maßnahmen, die spezifisch für die Elektromobilität gefördert werden. Wie in Japan kann man in Deutschland in Zukunft erwarten, dass die Förderung der Elektromobilität weiter zunehmen wird.

Als Ausblick bleibt festzuhalten, dass die Elektromobilität in Deutschland noch in den Anfängen steht und viel Arbeit bevorsteht, um den Wettbewerb mit anderen Ländern aufzuholen.
gestartet. Im Rahmen des Versuchs werden die Batterien der Fahrzeuge an einer Wechselstation in Tokio in regelmäßigen Abständen ausgetauscht.\(^{201}\)

Tab. 36 „Next-Generation Vehicle Strategy“, Japan.

<table>
<thead>
<tr>
<th>Gesamtplan</th>
<th>Batterie</th>
<th>Seltene Erden</th>
<th>Infrastruktur</th>
<th>Systeme</th>
<th>Internationale Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entwicklung und Produktion von Fahrzeugen der nächsten Generation</td>
<td>Verbesserungen in den Bereichen F&E und Technologie</td>
<td>Sicherstellung der Versorgung mit Seltener Erden und Entwicklung von Recycling-technologien</td>
<td>Versorgung mit zwei Millionen Normallad- und 5.000 Schnellladestationen</td>
<td>Fahrzeuge in Systeme einbinden (Smart Grid etc.)</td>
<td>Erarbeitung und Implementierung internationaler Standardisierungsmaßnahmen</td>
</tr>
</tbody>
</table>

Quelle: METI (2010).

Tab. 37 Steuervorteile emissionsarmer Fahrzeuge in Japan.

<table>
<thead>
<tr>
<th>Fahrzeugtyp</th>
<th>Anforderungen</th>
<th>Reduzierung/Wegfall</th>
<th>Erwerbssteuer</th>
<th>Tonnagesteuer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraftstoffsparende und emissionsarme Fahrzeuge</td>
<td>Mindestens 25 Prozent bessere Verbrauchswerte, als sie in den Standards des Jahres 2010 benannt sind, und Reduzierung der Emissionen um 75 Prozent im Vergleich zu den Standards 2005</td>
<td>75 Prozent Reduzierung</td>
<td>75 Prozent Reduzierung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mindestens 15 bis 20 Prozent bessere Verbrauchswerte, als sie in den Standards des Jahres 2010 benannt sind und Reduzierung der Emissionen um 75 Prozent im Vergleich zu den Standards 2005</td>
<td>50 Prozent Reduzierung</td>
<td>50 Prozent Reduzierung</td>
<td></td>
</tr>
<tr>
<td>Elektroautos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plug-in-Hybrid-Fahrzeuge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissionsarme Dieselfahrzeuge</td>
<td>befreit</td>
<td></td>
<td>befreit</td>
<td></td>
</tr>
<tr>
<td>Hybridfahrzeuge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erdgasfahrzeuge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lastwagen und Busse (2,5t<GVW≤3,5t)</td>
<td>(Dieselfahrzeuge) Übereinstimmend mit den Verbrauchswerten des Standards für 2015 und den Emissionsstandards des Jahres 2009</td>
<td>75 Prozent Reduzierung</td>
<td>75 Prozent Reduzierung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Konventionelle Fahrzeuge mit Verbrennungsmotor) Übereinstimmend mit den Verbrauchswerten des Standards für 2015 und Senkung der Emissionswerte um 50 Prozent im Vergleich zum Standard des Jahres 2005</td>
<td>50 Prozent Reduzierung</td>
<td>50 Prozent Reduzierung</td>
<td></td>
</tr>
<tr>
<td>Schwerlastwagen und Busse (GVW>3,5t)</td>
<td>Übereinstimmend mit den Verbrauchswerten des Standards für 2015 und den Emissionsstandards des Jahres 2009</td>
<td>75 Prozent Reduzierung</td>
<td>75 Prozent Reduzierung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übereinstimmend mit den Verbrauchswerten des Standards für 2015 und den Emissionsstandards des Jahres 2005, mit NO(_X) und/oder PM-Emissionen, die 10 Prozent unterhalb dieser Standards liegen</td>
<td>50 Prozent Reduzierung</td>
<td>50 Prozent Reduzierung</td>
<td></td>
</tr>
</tbody>
</table>

\(^{1}\) Gross vehicle weight

Quelle: Japan Automobile Manufacturers Association (2010), S. 45.

\(^{201}\) Spiegel Online (2010).
Republik Korea

Im Bereich der Akkutechnologie plant die Regierung bis zum Jahr 2020 15 Billionen WON (ca. 9,6 Milliarden Euro) zu investieren um bis zu diesem Zeitpunkt einen Weltmarkanteil von 50 Prozent zu erreichen.

Käufer von Hybrid-Fahrzeugen profitieren von diversen Steuervorteilen i. H. v. insgesamt 3,1 Millionen WON (ca. 1.982 Euro). In dem Betrag sind u. a. folgende Freibeträge enthalten: 1 Millionen WON Verbrauchssteuer, 0,3 Millionen WON Ausbildungssteuer, 0,4 Millionen WON Erwerbssteuer und 1 Millionen WON Zulassungssteuer.

202 Germany Trade and Invest (2010).
204 Wechselkurs zum 20. Oktober 2011.
205 Ta-jeon/Byong-chol (2011).
5.2 Energiespeicher

Einleitung

Mechanische Energiespeicher

Elektrochemische Energiespeicher
Nickel-Cadmium-Batterien haben mit 2.000 Ladezyklen eine gute Lebensdauer und eine etwa doppelt so große Energieichte wie Blei-Akku-mulatoren. Schwerwiegende Nachteile sind allerdings der Memoryeffekt\(^{206}\) und die Toxizität von Cadmium.

Sogenannte ZEBRA-Batterien sind Natrium-Nickelchlorid-Batterien. Bei diesen Hochtemperaturbatterien besteht die Kathode aus flüssigem Natrium, weshalb die Batterie immer auf einer Temperatur von ca. 300 °C gehalten werden muss. ZEBRA-Batterien sind wartungsarm und erreichen Energiedichten von bis zu 120 Wh/kg. Die wesentlichen Nachteile sind die geringe Lebensdauer und die hohe Selbstentladung aufgrund der Temperierung.

Elektrophysikalische Energiespeicher

Im sogenannten Rangone-Diagramm (Abbildung 58) wird die Leistungsdichte über der Energiedichte der unterschiedlichen Batterietypen aufgetragen. Es zeigt die Vorteile der Lithium-Ionen-Technologie und stellt die großen Potenziale der Post-Lithium-Ionen-Technologien dar.\(^{208}\)
Lithium-Ionen Batterien der zweiten und dritten Generation

Sicherheit und Zuverlässigkeit von Lithium-Ionen-Batterien

Qualität

State of Health, Alterung von Lithium-Ionen-Batterien

Post-Lithium-Ionen-Technologien

Signifikante Steigerungen in der Energiedichten werden erst durch Post-Lithium-Ionen-Technologien wie Li-S und Li-Luft erwartet. Mit der Li-S-Technologie sollen Energiedichten bis 400 Wh/kg möglich sein. Die Li-Luft-Technologie hat das größte Potenzial. Ihre theoretische Energiedichte (10 kWh/kg) liegt nahe an der von Diesel (12 kWh/kg). In einer dichten Batterie (10 kWh/kg) liegt nahe an der Potenzial. Ihre theoreti
cische Energie

Kabelgebundenes Laden

In der IEC 61851 werden vier verschiedene Lademodi unterschieden. Das Laden am Hausanschluss ohne (Mode 1) und mit In-cable Control Box (Mode 2), an einer speziellen Ladesäule (Mode 3) und das Laden mit Gleichstrom (Mode 4). Das Ladegerät befindet sich bei den Modi 1 bis 3 im Fahrzeug.

Mode 4 beschreibt das Laden mit Gleichstrom (DC). Die DC-Schnellladung ermöglicht hohe Ladeleistungen (bis 60 kW). Damit lässt sich eine Batterie in wenigen Minuten bis etwa 80 Prozent (State of Charge, SOC) aufladen. Allerdings wirkt sich die DC-Schnellladung negativ auf die Lebensdauer der Batterie aus. In diesem Mode befindet sich das Ladegerät in der Säule. Während des Ladevorgangs muss die DC-Ladesäule mit dem Batteriemagementsystem (RMS) kommunizieren, um den passenden Strom für einen einheitlichen Ladetechnik

5.3 Ladetechnik

Induktives Laden

Es gibt zahlreiche Forschungs- und Demonstrationsprojekte zur induktiven Ladung. Im Bereich des ÖPNV werden seit 2002 in Genua und 2003 in Turin Midibusse eingesetzt, die an den Haltestellen induktiv geladen werden.\(^218\) In Lörrach wurde in einem Demonstrationsprojekt 2005 ein Elektrobus auf einer 18 km langen Strecke eingesetzt. In der etwa einstündigen Mittagspause wurden die Blei-Gel-Batterien induktiv aufgeladen.\(^219\) Das Projekt wurde nach einem halben Jahr wieder eingestellt, weil weder die Antriebstechnologie noch die Energiespeicher den Anforderungen im Schwarzwald entsprochen haben.\(^220\) Der TOHYCO-Rider in Luzern verbindet induktive Ladetechnik mit SuperCaps als Energiespeicher.\(^221\) Alle Projekte verwenden eine kommerziell erhältliche induktive Ladetechnik (Inductive Power Transfer (ITP®) von Conductix-Wampfler). Obwohl die Lifecycle-Kosten als vergleichbar mit Dieselbussen abgeschätzt werden,\(^222\) haben sich diese Systeme...
noch nicht am Markt durchgesetzt. Eine weitere denkbare Anwendung wären induktive Taxiwartestreifen z. B. an Flughäfen.

Das Projekt „W-Charge“ untersucht die induktive Ladetechnik für Elektroautos. Es konnten bisher Ladeprozesse von 3 kW mit einem Wirkungsgrad von über 90 Prozent unter Einhaltung der Sicherheitskriterien zum Schutz von Menschen, Tieren und Sachwerten (ICNIRP) im Labor realisiert werden.\(^{223}\)

Die induktive Ladetechnik ermöglicht auch eine Energieaufnahme während der Fahrt. Bombardier hat die überleitungsfreie Straßenbahn Primove entwickelt.\(^{224}\) Ein Testbetrieb auf einer kurzen Strecke in Augsburg startete im Herbst 2010.\(^{225}\)

5.4 Abrechnungskonzepte

Derzeitige Abrechnungskonzepte für Elektromobilität sind insbesondere die Folgenden:

- Gebündelte Abrechnung z. B. für Flottenfahrzeuge mittels einer zentralen Ladestation (z. B. der Fuhrpark eines Energieversorgers, der am Betriebsgrundstück aufgeladen wird)
- Abrechnung von bereits im Abrechnungssystem erfassten Fahrzeugen an dezentralen Ladestationen mittels Kundennummer (s. Smart Home)
- Abrechnung von „unbekannten“ Fahrzeugen, z. B. analog dem Roaming-Prinzip im Bereich Mobilfunk
- Abrechnung auf Basis im Fahrzeug gemessener Daten (Mobile Metering)

Ein einfacheres Modell der Abrechnung wäre beispielsweise ein Stromliefervertrag, der gegebenenfalls sogar über den Liefervertrag zu Hause gekoppelt wird. Dieser berechtigt den Kunden, sein Elektrofahrzeug zu den im Vertrag

\(^{223}\) Fraunhofer IWES (2011).
\(^{224}\) Bombardier (2011).
\(^{225}\) Stadtwerke Augsburg (2010).
\(^{226}\) KAIST IGC (2009), Jolly (2009).
vereinbarten Stromtarifen an Lade-
säulen des Energielieferanten, an der
Ladestation des Nutzers zu Hause oder
jener eines Roaming-Partners zu laden.

Die komplette Abwicklung kann dabei
im Wesentlichen auf Basis heute bereits
definierter energiewirtschaftlicher
Prozesse erfolgen. Angefangen bei der
Authentifizierung des Nutzers, der
Messung der geladenen Strommenge bis
hin zur Rechnungslegung kann die
Abwicklung von bereits heute existieren-
den Marktakteuren (Netzbetreiber,
Messstellenbetreiber und Energieliefe-
rant) übernommen werden. Ein Nutzer
cann sich anhand eines PINs, einer
RFID-Karte oder eines Mobiltelefons
am Ladepunkt identifizieren und
nach erfolgreicher Autorisierung den
Ladevorgang beginnen.

Mobile Metering ermöglicht die
fahrzeugbezogene Abrechnung der
geladenen Strommengen. Durch die
Verlagerung der Messeinrichtung
in das Elektrofahrzeug kann die Lade-
infrastruktur einfacher gestaltet
werden. Identisch zum stationären
Messen müssen die Vorschriften zum
Eichrecht zwingend eingehalten werden
(siehe oben). Weiterhin ist eine eindeu-
tige Zuordnung von Ladepunkt und
entnommener Energiemenge wesentlich
für die korrekte Abrechnung mit den
verschiedenen Stromanbietern.

5.5 Antriebsstrang

Der Antriebsstrang eines Elektrofahr-
zeugs besteht im Wesentlichen aus
Elektromotor, Leistungs elektronik,
Steuergerät, Hochvolt-Komponenten,
Ladegerät und dem schon im vorange-
gangenen Kapitel betrachteten elektri-
schen Energiespeicher. In der radikals-
ten Form von Elektromobilität (Purpose
Design) entfallen u. a. Verbrennungs-
kraftmaschine, Abgasanlage, Tank,
Getriebe und Differential, in der ein-
fachsten Form (Conversion Design)
werden nur die notwendigen Kompo-
nenten ersetzt. In der nächsten
Dekade werden Conversion-Design-
Elektrofahrzeuge vorherrschen.

Gerade in Deutschland gibt es eine
starke Elektroindustrie. Allerdings
produziert diese im Wesentlichen für
Industrieanwendungen. Häufig wird
variantenreich im Kleinserienbereich
produziert. Ein Übergang zu auto-
mativen Fertigungstechnologien ist
notwendig. Standards zur Definition
wichtiger Kenndaten, der HV-System-
technik, der Diagnosetechnologien
und des Spannungsniveaus für das
Gesamtsystem helfen bei der zielgerich-
teten Entwicklung von Bauteilen. Eine
Vereinheitlichung von Steckern,
Gehäuse und Kabeln ermöglicht Modula-
risierung und Skaleneffekte und führt
somit zu einer Kostendegression.227

227 Nationale Plattform Elektromobilität (2010 (2)), S. 9 ff.
VI. Überführung der Ergebnisse in eine SWOT-Analyse

Nachfolgend werden wichtige Ergebnisse der bisherigen Arbeiten für die Nutzerakzeptanz der Elektromobilität in einer SWOT-Analyse komprimiert zusammengefasst:

<table>
<thead>
<tr>
<th>Stärken</th>
<th>Schwächen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• CO₂-freies Fahren möglich</td>
<td>• Reichweite für längere Strecken zu gering</td>
</tr>
<tr>
<td>• Elektroauto kann Smart Home nachhaltig unterstützen, Einbindung in das Smart Grid ist möglich</td>
<td>• Ausfalltage stellen bei der Kaufentscheidung einen wichtigen Entschlüsselungsfaktor dar</td>
</tr>
<tr>
<td>• Geringe Lärmemissionen</td>
<td>• Innenraumklimatisierung schränkt Reichweite ein</td>
</tr>
<tr>
<td>• Hoher Fahrsprung (Beschleunigung)</td>
<td>• Länge Ladezeiten</td>
</tr>
<tr>
<td>• Sehr hoher Fahrkomfort im urbanen Umfeld</td>
<td>• Hoher Anschaffungspreis</td>
</tr>
<tr>
<td>• Ladevorgang kann mit Parkvorgang verbunden werden (kein separates Tanken)</td>
<td>• Geringe Höchstgeschwindigkeit gegenüber vergleichbaren, konventionellen Fahrzeugen</td>
</tr>
<tr>
<td>• Niedrige Kosten für Betrieb und Unterhalt</td>
<td>• Mobile Flexibilität nimmt ab</td>
</tr>
<tr>
<td>• Verbesserte aktive Sicherheit</td>
<td>• Technologie und Rettungskette kaum praxiserprobt</td>
</tr>
<tr>
<td>• Laufende Normungsvorhaben unterstützen die Überwindung verschiedener technischer Hindernisse und die Festlegung zu Sicherheitsfragen</td>
<td>• Noch mangelnde Konvergenz von Normungsaktivitäten in unterschiedlichen Ländern</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chancen</th>
<th>Risiken</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ökologisches Mobilitätsverhalten durch Nutzung des inter- und multimodalen Verkehrs (ÖPNV, Pedelecs etc.) zur Reichweitenkompensation</td>
<td>• Der Anteil des Ladestroms aus erneuerbaren Energien ist zu gering, um Elektrofahrzeuge ökologischer zu machen (Energiewende verzögert sich)</td>
</tr>
<tr>
<td>• Reduzierung von Emissionen des fossil betriebenen Individualverkehrs (Lärm, Abgase)</td>
<td>• Anschaffungskosten bleiben zu hoch</td>
</tr>
<tr>
<td>• Schonung von fossilen Ressourcen</td>
<td>• Batterie leistet nicht, was sie verspricht (z.B. stark reduzierte Zyklenfestigkeit, deutlich reduzierte Kapazität unter klimatisch ungünstigen Verhältnissen)</td>
</tr>
<tr>
<td>• Abkopplung der Transportkosten von der internationalen Ölpreisentwicklung (nach der Umstellung der Energiewirtschaft auf erneuerbare Energien)</td>
<td>• Kosten für High-End-Infrastruktur zu hoch, belasten die TCO-Bilanz nachhaltig</td>
</tr>
<tr>
<td>• Deutliche Weiterentwicklung bei den Effizienztechnologien</td>
<td>• Spareffekte beim Betrieb und Unterhalt werden durch andere Kosten eliminiert</td>
</tr>
<tr>
<td>• Zunehmender Komfort durch induktives Laden</td>
<td>• Strompreise steigen stärker als Benzinpreise</td>
</tr>
<tr>
<td>• Benzinpreise steigen stärker als Strompreise</td>
<td>• Effizienzwinnie bei konventionellen Fahrzeugen</td>
</tr>
<tr>
<td>• Schaffung neuer Services (z.B. Mobilitätsschnitte) und Einnahmever mögkeiten z. B. bei Pkw-Infrastruktur und IKT</td>
<td>• Andere innovative Technologien setzen sich durch</td>
</tr>
<tr>
<td>• Einheitliche Normung steigert Marktfähigkeit</td>
<td>• Unfälle mit einem Elektrofahrzeug (z.B. elektrischer Schlag, Fußgängerrekollision) senken die Nutzerakzeptanz</td>
</tr>
</tbody>
</table>

E Zielgruppen

<table>
<thead>
<tr>
<th>Tab. 39 Zielgruppendefinition Elektromobilität nach McKinsey.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frühsteiger</td>
</tr>
<tr>
<td>Trendbewusst-</td>
</tr>
<tr>
<td>ökologisch</td>
</tr>
<tr>
<td>Zeigen gerne</td>
</tr>
<tr>
<td>Präsenz</td>
</tr>
<tr>
<td>Offen gegenüber</td>
</tr>
<tr>
<td>neuer Technologie</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Preis spielt</td>
</tr>
<tr>
<td>geringe Rolle</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ökologisches</td>
</tr>
<tr>
<td>Bewusstsein steht</td>
</tr>
<tr>
<td>über Performance</td>
</tr>
<tr>
<td>Komfort muss</td>
</tr>
<tr>
<td>gegeben sein</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Designaffinität</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Tab. 40 Potenzielle Nutzer und Hypothesen (Fraunhofer ISI)

<table>
<thead>
<tr>
<th>Technikbegeisterte</th>
<th>Umweltengagierte</th>
<th>Urbane Individualisten</th>
<th>Wohlsituierte Ältere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begeisterung für Technologie und das innovative Image der Fahrzeuge</td>
<td>Umweltaspekte prägen die Kaufentscheidung und die Nutzung, die Umweltbilanz ist wichtig</td>
<td>Städtische oder stadtnahe Bewohner</td>
<td>Luxusgegenstand mit Alltagsnutzen</td>
</tr>
<tr>
<td>Eher männlich und Interesse an besonderen technischen Eigenschaften der Fahrzeuge</td>
<td>Häufig inter- oder multimodal, d.h. verkehrsmittel-übergreifend, mobil zugunsten der Umwelt</td>
<td>Hohes (oft berufliches) Mobilitätsbedürfnis</td>
<td>Technikaffinität</td>
</tr>
<tr>
<td>Häufige Zweitwagenutzung</td>
<td>Nutzung des Pkw für bestimmte Zwecke (Transport, bestimmte Strecken)</td>
<td>Mobilität soll die Lebensqualität sichern und modern, flexibel und ökologisch sein</td>
<td>Altersgruppe der über 60-Jährigen mit überdurchschnittlichem Einkommen bzw. Vermögen</td>
</tr>
<tr>
<td>Fahrspaß und Außenwirkung sind wichtige Faktoren</td>
<td>Offen insbesondere für die Verbindung der Elektromobilität mit Carsharing und erneuerbaren Energien</td>
<td>Ergänzung zu anderen Verkehrsmitteln, einfacher Zugang z.B. durch IKT, auch Nutzung von Carsharing möglich</td>
<td>Nutzung eher als Zweitwagen</td>
</tr>
</tbody>
</table>

Quelle: Fraunhofer ISI (2010), S. 20ff.

Die dargestellten Ausführungen zur Identifikation und Zuordnung von Zielgruppen werden modifiziert für die folgenden Betrachtungen übernommen. Demnach werden für insgesamt fünf Zielgruppen Aussagen über deren Einstellung zu bestimmten Themenbereichen getroffen.

Tab. 41: Merkmale von unterschiedlichen Nutzergruppen.

<table>
<thead>
<tr>
<th></th>
<th>Technikbegeisterte</th>
<th>Umweltbewusste</th>
<th>Kostenbewusste</th>
<th>Sicherheitsbewusste</th>
<th>Konservative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kosten</td>
<td>0</td>
<td>0</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>Reichweite</td>
<td>++</td>
<td>0</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Zuverlässigkeit</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Strommix statt Benzin</td>
<td>++</td>
<td>–</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Strom aus erneuerbaren Energien</td>
<td>+</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ladevorgang mit Kabel</td>
<td>+</td>
<td>++</td>
<td>0</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Induktives Laden</td>
<td>++</td>
<td>–</td>
<td>–</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Komfort</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Design</td>
<td>++</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

++ Sehr wichtig
+ Wichtig
o Indifferent
– Eher unwichtig
— Völlig unwichtig

E Zielgruppen
Erarbeitung von mittel- bis langfristigen Szenarien
I. Einleitung

Abbildung 62 Kritische Faktoren der Elektromobilität.

Quelle: PwC, Fraunhofer LBF, FH FFM (2011)

<table>
<thead>
<tr>
<th>Fahrzeugsegment</th>
<th>K</th>
<th>M</th>
<th>O</th>
<th>Sp</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reichweite</td>
<td>108</td>
<td>160</td>
<td>260</td>
<td>340</td>
<td>200</td>
<td>210</td>
</tr>
</tbody>
</table>

Quelle: FfE (2010), S. 21

II. Kritische Faktoren

2.1 Kosten, Reichweite und Ladeinfrastruktur

Es wurde gezeigt, dass gegenwärtiges und zukünftiges Verkehrsverhalten der Nutzer nicht wesentlich voneinander abweichen werden. Die Anzahl der Wege und die Wegstrecken werden ansteigen, sich aber nicht maßgeblich auf die Nutzbarkeit von Elektrofahrzeugen auswirken. Während die Anzahl der PKW-Besitzer vermutlich sinken wird, ist für die Anzahl der PKW-Nutzer keine entsprechende Änderung zu erwarten. E-Carsharing- und Mietkonzepte werden als Alternative zum PKW-Besitz an Bedeutung gewinnen.

<table>
<thead>
<tr>
<th>Kilometer pro Tag</th>
<th>Anteil in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gruppe 1 0–10</td>
<td>16,6 %</td>
</tr>
<tr>
<td>Gruppe 2 11–30</td>
<td>34,5 %</td>
</tr>
<tr>
<td>Gruppe 3 31–80</td>
<td>30,1 %</td>
</tr>
<tr>
<td>Gruppe 4 81–140</td>
<td>11 %</td>
</tr>
<tr>
<td>Gruppe 5 >140</td>
<td>7,8 %</td>
</tr>
</tbody>
</table>

Quelle: VDE (2010), S. 179.

229 (VDE, 2010), S. 179.
Faktoren wie Reichweite und Ladedauer bzw. Verfügbarkeit sind hier zu berücksichtigen. Falls es jedoch in anderen Ländern wie z. B. Frankreich oder Großbritannien zum Aufbau einer breiten (halb-)öffentlichen Ladeinfrastruktur kommen sollte, kann es durchaus sein, dass in Deutschland ähnliche Entwicklungen zu beobachten sein werden.

<table>
<thead>
<tr>
<th>Tab. 44 Kostenvergleich Tanken/Laden (zu Hause vs. öffentlich).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tanken</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Preis in €</td>
</tr>
<tr>
<td>€/140km</td>
</tr>
</tbody>
</table>

zurückzuführen. Eine Standardisierung von Bauteilen für den Antriebsstrang kann ebenfalls positive Effekte haben. Basis für die Entwicklung der Differenz der Anschaffungskosten eines Kleinwagens bilden die Berechnungen der NPE (s. o.). Demnach werden Öl- und Strompreis im Basis­szenario langfristig auf einem Niveau von etwa 2 Prozent p. a. anwachsen.

Abb. 63 Entwicklung der Strom- und Benzinpreise in Deutschland (indexiert).

233 NPE (2011).
234 Die Benzinkosten werden im Ausgangsjahr mit 1,55 €/l und die Stromkosten mit 0,22 €/kWh angenommen.
235 Nutzt die NPE eigene Berechnungen.
236 (Baum, Dobberstein, & Schulter, 2011), eigene Berechnungen.

In Tabelle 45 wird den Ergebnissen der Berechnungen das unter Kosten- und Reichweitenaspekten zu erreichende Potenzial an Nutzern (Fahrzeughaltern) zugeordnet. Es werden nur die Nutzer berücksichtigt, die auch potenziell über einen Stellplatz verfügen. Unter Kosten- und Reichweitenaspekten scheint es im Basisszenario möglich, bis zum Jahr 2025 mehr als zehn Millionen Nutzer für die Elektromobilität zu gewinnen. In der Praxis sind jedoch neben Kosten und Reichweite auch andere Gründe (z. B. Sicherheit, Flexibilität) für den Umstieg auf eine neue Technologie zu beachten. Somit dürften die tatsächlichen Zahlen deutlich darunter liegen.

Neben dem Barkauf werden die Möglichkeiten einer anteiligen Fremdfinanzierung sowie Leasingmodelle transparent dargestellt. Demnach sind Leasingmodelle aufgrund der meist kurzen Haltedauer, die in diesem Beispiel mit drei Jahren angenommen wurde sowie des höheren prozentualen Abschlags auf den Neupreis (Risiko der Haltbarkeit der Batterie wird eingepreist) zurzeit weitgehend unattraktiv.

Abb. 64 Bis zur Amortisation zu fahrende Kilometer pro Tag.

Abb. 65 Bis zur Amortisation zu fahrende Kilometer pro Wochentag.

Berechnungen des ADAC zeigen, dass die CO₂-Emissionen eines Smart ForTwo mit Elektromotor bei geringerer Leistung auf einem höheren Niveau als die eines Dieselfahrzeugs liegen, wenn der Strom hauptsächlich in Steinkohlekraftwerken erzeugt werden würde. Unter Zugrundelegung des heutigen Strommixes würde ein Elektro-Smart bei geringerer Leistung unwesentlich besser abschneiden. Elektrofahrzeuge werden aktuell nach den gleichen Kriterien wie Benzin- und Dieselfahrzeuge bewertet. Nicht zuletzt durch die Technik bedingt, werden sich die Einsatzspektren von Elektrofahrzeugen und Verbrennungsfahrzeugen unterscheiden. Gerade im städtischen Verkehr haben Elektrofahrzeuge...
Elektromobilität – Normen bringen die Zukunft in Fahrt

Erarbeitung von mittel- bis langfristigen Szenarien

241 VBW (2011).

Verbrauchsvorteile wohingegen sie für lange Strecken auf Autobahnen ungeeignet sind. Eine differenziertere Betrachtung für unterschiedliche Antriebskonzepte ist notwendig.

Die aktuellen Beschlüsse der Bundesregierung, langfristig auf Kernenergie zu verzichten und erneuerbare Energien stärker einzubinden, werden den Strommix grundlegend verändern. Demnach wird der Anteil erneuerbarer Energien am Strommix auf etwa 47 Prozent im Jahr 2023 steigen.241

Verbrauchsvorteile wohingegen sie für lange Strecken auf Autobahnen ungeeignet sind. Eine differenziertere Betrachtung für unterschiedliche Antriebskonzepte ist notwendig.

Es zeigt sich, dass die negativen Umweltauswirkungen sowohl für Verbrennungsmotoren als auch für Elektrofahrzeuge sinken werden. Sofern Elektromobilität in Zukunft aus erneuerbaren Energien gespeist wird, besteht das Potenzial, langfristig weitgehend CO₂-frei zu fahren. Der Strombedarf von einer Million Elektrofahrzeugen entspricht ungefähr 0,3 Prozent des deutschen Gesamtstrombedarfs. Das ist sehr viel weniger als die nachhaltig erzeugte Strommenge (s. o.).

241 VBW (2011).

2.3 Sicherheit und Zuverlässigkeit

2.4 Komfort

| Tab. 46 Sicherheitsrelevante Themen der Elektromobilität |
|---------------------------------|----------------|-----------------|------------------|
| Unfall | Ladevorgang | Fahrzeugbetrieb | Batterie |
| Unfallursache in Fehlfunktion der Technik | Personenschäden durch elektrischen Schlag aufgrund von z.B. Fehlbedienung, Vandalismus | „Funktionale Sicherheit“ | Gefahr von Ausgasung bis zum Brand durch z.B. Überladung etc. |
| Personenschäden (Insassen/Helfer) durch elektrischen Schlag | Materieller Schaden durch Vandalismus | Zuverlässigkeit der SOC-Anzeige | Gewährleistung von Sicherheitsfunktionen bei leerer Traktionsbatterie |
| Zurückhaltung von Helfern aufgrund unzureichender Kenntnis über die Rettung aus EV | Haftung für Schäden Dritter | Auslegung auf die Beanspruchungen |
| Direkter oder verzögerter Brand | Brandgefahr bei unzureichender elektrischer Installation | Zuverlässigkeit bei jedem Wetter |
| Transport verunfallter EV | Elektromagnetische Verträglichkeit (EMV) Problematik insbes. beim inductiven Laden | „Grundzustand“ im Störungsfall |

dass die verwendeten User Interfaces (im Fahrzeug, an der Ladestation etc.) ein einheitliches Erscheinungsbild haben und die Basisfunktionalität immer gleich ist. Die Eigendiagnose von Fahrzeug und Ladeinfrastruktur mit standardisierten Signalen ermöglicht den Nutzern die Identifikation fehlerhafter Subsysteme. Diese Aspekte vereinfachen die Bedienung und erleichtern dem Nutzer das Zurechtfinden in einem unbekannten Fahrzeug oder einer unbekannten Infrastruktur und senken Hemmschwellen, die aufgrund der neuen Technik entstehen können.

Einzig bei den Themen Reichweite und Flexibilität wird der bisherige Komfort im Untersuchungszeitraum nicht gewährleistet werden können und muss durch ausgleichende Maßnahmen wie E-Carsharing, Mietwagen oder die Nutzung einer Mobilitätskarte (intermodale Verkehrsnutzung) kompensiert werden. Dies bietet für die Nutzer auch Vorteile. Sie können je nach Bedarf flexibel auf verschiedene Fahrzeugarten zurückgreifen (z. B. Minivan, Transporter) und benötigen daher nur ein Basisfahrzeug für die alltäglichen privaten Wege oder den Weg zur Arbeit. Im städtischen Umfeld könnte dann auch der ÖPNV im Rahmen einer Mobilitätskarte als Ersatz dienen.

Abb. 69 Komfort bei Elektroautos – Chancen und Risiken.

<table>
<thead>
<tr>
<th>Chancen</th>
<th>Risiken</th>
</tr>
</thead>
<tbody>
<tr>
<td>Induktionsladung</td>
<td>Reichweite</td>
</tr>
<tr>
<td>Geräuscharmut</td>
<td>Flexibilität</td>
</tr>
<tr>
<td>IKT</td>
<td></td>
</tr>
<tr>
<td>Fahrdynamik</td>
<td></td>
</tr>
</tbody>
</table>

245 Weitere Potenziale bestehen z. B. infolge der Substitution des Tankvorgangs durch den Ladevorgang.

246 Mein Elektroauto (2011 (2)).
III. Darstellung zukünftiger Entwicklungen

3.1 Basisszenario

Generell ist es so, dass im Betrachtungszeitraum die Käufer von reinen Elektroautos nach wie vor großenteils über einen eigenen Stellplatz mit Lademöglichkeit im privaten Umfeld verfügen werden. Die auf diese Weise angesprochene Gruppe bietet ein großes Potenzial (s.o.). Stadtbewohner werden insbesondere über Angebote des ÖPNV (Mobilitätskarte) und andere Mobilitätsdienstleister (E-Carsharing) an der Elektromobilität teilhaben.

Nachfolgend werden wesentliche Entwicklungen in den einzelnen Perioden verkürzt dargestellt.

2011 bis 2015

Die Errichtung von Schnellladestationen auf Verbindungswegen zu Großstädten wird deutlich weiter vorangetrieben. Die Zahl der Schnellladestationen erhöht sich, und die technologische Ausstattung verbessert sich. Die Verbreitung von Schnellladestationen wird stark von den Automobilfabrikaten und anderen Unternehmen, die sich auf die Elektromobilität spezialisiert haben, gefördert. Die Öffentlichkeit erhält eine bessere Sicht auf die Möglichkeiten der Elektromobilität und ermutigt die Bürger, sich mit der neuen Technologie auseinanderzusetzen.

Die öffentliche Hand spielt hierbei eine entscheidende Rolle, indem sie die Errichtung und den Betrieb von Schnellladestationen fördert und gleichzeitig die Bevölkerung über die Vorteile der Elektromobilität informiert. Die öffentliche Meinung wird durch diese Maßnahmen auf das Thema Elektromobilität aufmerksam gemacht, und die Verbreitung des Wissens über die Technologie und die Notwendigkeit der Umweltschutzmaßnahmen wird weiterhin gesteigert.

II. Erarbeitung von mittel- bis langfristigen Szenarien

Das Thema Rettungsleitfäden wird auch in der Normungs-Roadmap aufgegriffen. Vorschläge für eine Umsetzung wurden bisher nicht genannt.

2015 bis 2020
Der steigende Anteil erneuerbarer Energien am deutschen Strommix und die zunehmende Erkenntnis, dass autarke Energieversorgungsmodelle möglich sind, bringt die Gruppe der Umweltbewussten dazu, elektromobil zu werden. Die Reichweitenangst wird den Nutzern durch die Strukturierung geeigneter Geschäftsmodelle genommen. Kombinierten Modellen kommt hier eine große Bedeutung zu. So wird Nutzern von reinen Elektroautos z. B. beim Kauf angeboten, zusätzlich mehrfach im Jahr konventionelle oder Hybridfahrzeuge zu vergünstigten Bedingungen in Fahrt

2020 bis 2025

Die Gruppe der Konservativen wird erst später, d. h. nach dem Jahr 2025 und damit im Massenmarkt elektromobil werden. Zunächst werden Hybridkonzepte dazu dienen, die Elektromobilität an diese Gruppe heranzuführen.
Erarbeitung von mittel- bis langfristigen Szenarien

Abb. 71 Szenario 1 – Basisszenario.

- Erste Elektro- und Hybridautos kommen auf den Markt
- Projekte und Maßnahmen der öffentlichen Hand erzielen breite Öffentlichkeitswirkung
- Interesse der Nutzer an Elektromobilität steigt
- Ladeinfrastruktur wird punktuell errichtet
- Technikbegeisterte und Unternehmen kaufen/leasen erste Autos
- E-Carsharing-Konzepte und Mobilitätsketten machen Elektromobilität für den Nutzer erfahbar

2011

- Erste Elektroautos auf dem Markt, Batteriekosten sinken
- Ladevorgang hauptsächlich zu Hause und am Arbeitsplatz
- Wall-Box wird in Konzepte integriert
- Weitere Ladekonzepte sind marktreif (DC, Induktion)
- Betriebskosten deutlich geringer als beim Verbrennungsfahrzeug
- Rettungskette ist auf den Umgang mit Elektrofahrzeugen vorbereitet
- Technologische Entwicklung erhöht Zuverlässigkeit
- Gute Einsatzbedingungen durch milde Wetter
- Anteil erneuerbarer Energien am Strommix steigt

2015

- Implementierung von Vehicle-to-Grid- und Smart-Home-Konzepten
- Unfälle beim Laden und Fahren unterbrechen Markthochlauf der Elektromobilität unwesentlich
- Erste Elektro- und Hybridautos kommen auf den Markt
- Projekte und Maßnahmen der öffentlichen Hand erzielen breite Öffentlichkeitswirkung
- Interesse der Nutzer an Elektromobilität steigt
- Ladeinfrastruktur wird punktuell errichtet
- Technikbegeisterte und Unternehmen kaufen/leasen erste Autos
- E-Carsharing-Konzepte und Mobilitätsketten machen Elektromobilität für den Nutzer erfahbar

2020

- Viele Elektroautos auf dem Markt, Batteriekosten sinken
- Ladevorgang hauptsächlich zu Hause und am Arbeitsplatz
- Wall-Box wird in Konzepte integriert
- Weitere Ladekonzepte sind marktreif (DC, Induktion)
- Betriebskosten deutlich geringer als beim Verbrennungsfahrzeug
- Rettungskette ist auf den Umgang mit Elektrofahrzeugen vorbereitet
- Technologische Entwicklung erhöht Zuverlässigkeit
- Gute Einsatzbedingungen durch milde Wetter
- Anteil erneuerbarer Energien am Strommix steigt

2025

- Viele Elektroautos auf dem Markt, Batteriekosten sinken
- Ladevorgang hauptsächlich zu Hause und am Arbeitsplatz
- Wall-Box wird in Konzepte integriert
- Weitere Ladekonzepte sind marktreif (DC, Induktion)
- Betriebskosten deutlich geringer als beim Verbrennungsfahrzeug
- Rettungskette ist auf den Umgang mit Elektrofahrzeugen vorbereitet
- Technologische Entwicklung erhöht Zuverlässigkeit
- Gute Einsatzbedingungen durch milde Wetter
- Anteil erneuerbarer Energien am Strommix steigt

3.2 Negativszenario

Das Negativszenario wurde so konzipiert, dass einzelne Faktoren, die das Potenzial haben, die Marktdurchdringung der Elektromobilität entscheidend zu behindern, besonders herausgestellt werden.

2011 bis 2015

2015 bis 2020

2020 bis 2025

242 Im Basisszenario wurden nur punktuell Ladestationen errichtet, die per Annahme nicht zu wesentlichen Umlagen auf die Nutzer geführt haben.
Erarbeitung von mittel- bis langfristigen Szenarien

Abb. 72 Szenario 2 – Negativszenario.

<table>
<thead>
<tr>
<th>2011</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markt-/Technologievorbereitung</td>
<td>Markthochlauf</td>
<td>Stagnation</td>
<td>Markterholung</td>
</tr>
</tbody>
</table>

- Erste Elektro- und Hybridautos kommen auf den Markt
- Projekte und Maßnahmen der öffentlichen Hand erzielen breite Öffentlichkeitswirkung
- Interesse der Nutzer an Elektromobilität steigt
- Flächendeckender Aufbau einer Ladeinfrastruktur wird begonnen
- Technikbegeisterte und Unternehmen kaufen/leasen erste Autos
- E-Carsharing-Konzepte und Mobilitätsketten machen Elektromobilität für den Nutzer erfahrbar

- Viele Elektroautos auf dem Markt, Batteriekosten sinken
- Ladekonzepte sind marktreif (DC, Induktion)
- Kosten des Aufbaus der Ladeinfrastruktur werden auf den Nutzer umgelegt – Akzeptanz sinkt
- Unfälle von Elektroautos mit schwerwiegenden Folgen (schwere Verletzungen durch Batteriebrände, Diagnose-Instrumente unzureichend, Komplikationen beim Abtransport, Rettungskette nicht erprobt)
- Mediales Echo verzögert Annahme der Elektromobilität beim Nutzer um mehrere Jahre
- Schwere Einsatzbedingungen durch harte Winter, Vertrauen der Nutzer in die Zuverlässigkeit der Autos sinkt
- Konventionelle Autos werden deutlich umweltfreundlicher
- Anteil erneuerbarer Energien am Strommix steigt
- Strompreise steigen aufgrund der Energiewende stärker als Benzinpreise
- Technologische Entwicklungen
- Öffentlichkeitsarbeit
- Implementierung von Vehicle-to-Grid- und Smart-Home-Konzepten
- Erforderliche Fördermaßnahmen des Staates werden umgesetzt

Beispielhafte Darstellung

- Erste Elektro- und Hybridautos kommen auf den Markt
- Projekte und Maßnahmen der öffentlichen Hand erzielen breite Öffentlichkeitswirkung
- Interesse der Nutzer an Elektromobilität steigt
- Flächendeckender Aufbau einer Ladeinfrastruktur wird begonnen
- Technikbegeisterte und Unternehmen kaufen/leasen erste Autos
- E-Carsharing-Konzepte und Mobilitätsketten machen Elektromobilität für den Nutzer erfahrbar

G Ableitung des Normungs- und Standardisierungsbedarfs
I. Anzuwendender Filter

Die Identifikation der Bereiche in denen potenziell Normungsbedarf bestehen könnte, ist an der Anwendung eines für diesen Zweck entwickelten Filters orientiert:
1. Das Themenfeld ist für die Elektromobilität grundsätzlich relevant
2. Das Themenfeld wird voraussichtlich im Zeitraum 2015 bis 2025 für die Elektromobilität relevant
3. Das Themenfeld wird nicht bzw. nicht umfassend in der Normungs-Roadmap behandelt

II. Kritische Faktoren

Eine zielgerichtete Normung kann die Entwicklung der Elektromobilität maßgeblich fördern, da nur durch sie die Bereitschaft zur Nutzung von Elektrofahrzeugen im Alltag erhöht werden kann und sie ebenfalls Maßstäbe für die Wirtschaftlichkeit des Systems Elektromobilität setzt.
Tab. 47: Kritische Faktoren und Normen

<table>
<thead>
<tr>
<th>Kosten</th>
<th>Reichweite</th>
<th>Ladeinfrastruktur</th>
<th>Umwelt</th>
<th>Sicherheit und Zuverlässigkeit</th>
<th>Komfort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ein standardisiertes Verfahren zur Bestimmung des aktuellen Zustands und des noch zu erwartenden Leistungsvermögens gebrauchter Batterien</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Normiertes, zuverlässiges Messverfahren für State of Charge/Reichweitenvorhersage</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Normierte Benutzerschnittstelle</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Standardisierte Modelle für Life Cycle Cost/Total Cost of Ownership und Life Cycle Assessment</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Geräuschkatalog</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Grundzustand im Störungsfall beim Ladevorgang</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Periodische Überwachung von Hausinstallationen</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rettungsleitfäden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messverfahren/Leitfaden zur Bestimmung des Restrisikos durch verunfallte Batterien</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Festlegung von Mindestanforderungen an die Qualität bei Produktionsprozessen</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Kennzeichnung von Elektrofahrzeugen</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Sicherheitsanforderungen</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Informations- und Kommunikationstechnologie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bauliche Integration und barrierefreie Gestaltung der Ladeinfrastruktur</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Gewährleistung von Sicherheitsfunktionen und weiterer wichtiger Funktionen, wenn der Hauptenergiespeicher leer ist, z. B. Warnblinker, E-Call, Sicherheitseinrichtungen, Türverriegelung etc.</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Auf die Elektromobilität angepasste Fahrzyklen</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Position für den Ladeanschluss</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

III. Anwendung von Use Cases

In einem Use Case werden die Akteure und Aktivitäten eines zu betrachtenden Vorgangs auf unterschiedlichen Detailebenen transparent und einfach dargestellt. Die Granularität von Use Cases kann je nach Vorgang und Zweck sehr unterschiedlich gestaltet werden.

Ein Use Case ist grundsätzlich dreistufig aufgebaut:
- Verbale Beschreibung des Use Cases
- Abbildung von Akteuren, Aktivitäten und Beziehungen in einem Use-Case-Diagramm
- Zerlegung der Aktivitäten in Einzelschritte

Die verbale Beschreibung kann je nach Zielsetzung unterschiedlich ausfallen. Für Geschäftsmodelle bietet sich eine Einteilung in den Nutzen, die Art der Leistungserstellung und das Ertragsmodell an.

Im Use-Case-Diagramm werden die Akteure in ihren unterschiedlichen Marktpositionen außerhalb der Aktivitäten innerhalb einer Box dargestellt. Die Verbindungslinien (Beziehungen/Assoziationen) zeigen welche Akteure in die einzelnen Aktivitäten involviert sind und wie die Beziehungen zwischen den Akteuren und Aktivitäten ablaufen. Je nach Use Case kann das Diagramm eine Zeitschiene beinhalten, auf der der Vorgang entsprechend eingeordnet wird.

<table>
<thead>
<tr>
<th>Tab. 48: Relevante Normenarten aus DIN 820.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normart</td>
</tr>
<tr>
<td>Gebrauchstauglichkeitsnorm</td>
</tr>
<tr>
<td>Liefernorm</td>
</tr>
<tr>
<td>Maßnorm</td>
</tr>
<tr>
<td>Planungsnorm</td>
</tr>
<tr>
<td>Qualitätsnorm</td>
</tr>
<tr>
<td>Sicherheitsnorm</td>
</tr>
<tr>
<td>Stoffnorm</td>
</tr>
<tr>
<td>Verständigungsnorm</td>
</tr>
</tbody>
</table>

Quelle: Relevante Normenarten aus DIN 820.

Ein Use Case beschreibt daher Vorgänge aus der Sicht der beteiligten Marktpositionen und abstrahiert technische Details. Die Akteure zu definieren, ihnen die jeweilige Rolle zuzuweisen, die Aktivitäten darzustellen und das System einzugrenzen sind wichtige Aufgaben, die den Aufbau eines Use Cases wesentlich beeinflussen. Die Methode der Use Cases zeigt somit die logisch nachvollziehbare Aufteilung eines Vorgangs in seine Einzelschritte. Ein Use-Case-Diagramm dient dazu, die Nutzeranforderungen für einen klar abgrenzbaren Vorgang zu verstehen und Schnittstellen zu definieren.

Die Arbeit der Normungsgremien besteht darin, aus den jeweiligen Use Cases technische Anforderungen für ihren Bereich abzuleiten und in Normen umzusetzen. Use Cases können somit in einem frühen Stadium Vorgänge abbilden und Pläne beschreiben, die systemisch noch umzusetzen sind.
Die Methode der Use Cases wurde für unterschiedliche Themenstellungen angewandt und der Normungsbedarf entsprechend abgeleitet. Die Auswahl der an dieser Stelle vorgestellten Themenstellungen folgte zum einen aus der Anwendung des Filters und zum anderen aus dem Abgleich des Normungsbedarfs unterschiedlicher Use Cases, um so Dopplungen zu vermeiden. Ein Beispiel für Dopplungen ist das Thema Authentifizierung, das in vielen Use Cases enthalten ist.

Tab. 49: Auswahl der Use Cases zur Ermittlung des Normungsbedarfs.

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Elektromobilitäts-spezifisch</th>
<th>Relevanz für die Elektromobilität im Untersuchungszeitraum in Deutschland</th>
<th>Noch keine detaillierte Bearbeitung des Themenfeldes im Bereich Normung und Standardisierung</th>
<th>Keine Dopplung zu in dieser Tabelle vorangestellten Use Cases</th>
<th>Normungsbedarf</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Authentifizierung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Demand</td>
<td>(x)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>RFID-Karte</td>
<td>(x)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2. Rettungskette</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unfall mit Personenschaden</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Unfall ohne Personenschaden</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Metering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mobil</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Stationär</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Ferndiagnose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wartung</td>
<td>x</td>
<td></td>
<td>x</td>
<td>(x)</td>
<td>x</td>
</tr>
<tr>
<td>Pannenhilfe</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Eigendiagnose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fußnoten

250 Die Betrachtung erfolgt für Deutschland. Die Mehrzahl der aufgeführten Use Cases hat auch europäische und internationale Relevanz.
Somit verbleiben im Wesentlichen sechs Themenbereiche, für die der Normungsbedarf unter Verwendung von Use Cases abgeleitet wurde:

- Vorbereitung von Batterien zur Zweinutzung (VBZ)
- Hausenergiesysteme (HES)
- Authentifizierung – RFID-Karte (ARK), on Demand (AOD)
- Wartung mittels Ferndiagnose (WmF)
- Rettungskette – Unfall mit Personenschaden (RUmP)
- Eigendiagnose Fahrzeug und Ladestation (ED)

Tab. 50: Relevanz von Normarten bei ausgewählten Use Cases.

<table>
<thead>
<tr>
<th>Norm</th>
<th>VBZ</th>
<th>HES</th>
<th>ARK</th>
<th>AOD</th>
<th>WmF</th>
<th>ED</th>
<th>RUmP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gebrauchstauglichkeitsnorm</td>
<td>k. N. i.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>k. N. i.</td>
<td>x</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Liefernorm</td>
<td>k. N. i.</td>
<td>k. N. i.</td>
<td>x</td>
<td>x</td>
<td>k. N. i.</td>
<td>k. N. i.</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Maßnorm</td>
<td>k. N. i.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>k. N. i.</td>
<td>k. N. i.</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Planungsnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Qualitätsnorm</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>k. N. i.</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Sicherheitsnorm</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>k. N. i.</td>
<td>X</td>
</tr>
<tr>
<td>Stoffnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Verständigungsnorm</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Anhand eines Exkurses zum Thema Vorbereitung zur Zweitnutzung von Batterien wird im Folgenden verdeutlicht, wie welche Normen aus den Use Cases abgeleitet wurden.

1. Verbale Beschreibung des Geschäftsmodells

Welcher Nutzen wird für die Kunden sowie Partner des Unternehmens gestiftet?
Der Kunde hat den Nutzen, dass er Batterien, die nicht mehr seinen Anforderungen genügen bzw. die aufgrund eines Schadens am Fahrzeug nicht mehr benötigt werden, aber grundsätzlich noch zu benutzen sind, veräußern kann.

Wie sieht die Art der Leistungserstellung aus?
Der Gebrauchtbatteriehändler testet die Batterie mit Hilfe eines Prüfinstituts, um eine detaillierte sicherheitstechnische sowie monetäre Bewertung vorzunehmen. Im Anschluss ermittelt der Gebrauchtbatteriehändler mögliche Einsatzgebiete der Batterie und bietet sie den relevanten Kundengruppen zum Kauf an.

Aus welchen Quellen können welche Einnahmen generiert werden?
Der Gebrauchtbatteriehändler kann Erlöse erzielen, indem er in den Wiederverkaufspreis der Batterie, die Kosten für den Ankauf und die Prüfung der Batterie sowie einen Risikoaufschlag für einen möglichen Gewährleistungsanspruch einkalkuliert. Denkbar ist beispielsweise die Zweitnutzung der Batterien als stationäre Speicher.

2. Grafische Darstellung des Geschäftsmodells

Abb. 73 Use-Case-Vorbereitung von Batterien zur Zweitnutzung.

3. Zerlegung der Aktivitäten in Einzelschritte und Ermittlung des Normungsbedarfs

Abb. 74 Aktivität: Übergabe an den Händler.

<table>
<thead>
<tr>
<th>Abb. 74 Aktivität: Übergabe an den Händler.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport EV zur Werkstatt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normungsart</th>
<th>Normungsbewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gebrauchstauglichkeitsnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Liefernorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Maßnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Planungsnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Qualitätsnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Sicherheitsnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Stoffnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Verständigungsnorm</td>
<td>k. N. i.</td>
</tr>
</tbody>
</table>

Abb. 75 Aktivität: Batterietest.¹

<table>
<thead>
<tr>
<th>Abb. 75 Aktivität: Batterietest.¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport zum Prüfinstitut</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Normungsart</th>
<th>Normungsbewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gebrauchstauglichkeitsnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Liefernorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Maßnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Planungsnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Qualitätsnorm</td>
<td>Test der Performance</td>
</tr>
<tr>
<td>Sicherheitsnorm</td>
<td>Test der Sicherheit</td>
</tr>
<tr>
<td>Stoffnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Verständigungsnorm</td>
<td>Bewertung der Testergebnisse</td>
</tr>
</tbody>
</table>

¹ Zell-/Modul- oder Batterieebene je nach Geschäftsmodell

Abb. 76 Aktivität: Weitervertrieb.

<table>
<thead>
<tr>
<th>Normungsart</th>
<th>Normungsbewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gebrauchstauglichkeit</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Liefernorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Maßnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Planungsnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Qualitätsnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Sicherheitsnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Stoffnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Verständigungsnorm</td>
<td>Bewertung der Testergebnisse</td>
</tr>
</tbody>
</table>

Abb. 77 Aktivität: Übergabe an den Zweitnutzer.

<table>
<thead>
<tr>
<th>Normungsart</th>
<th>Normungsbewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gebrauchstauglichkeit</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Liefernorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Maßnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Planungsnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Qualitätsnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Sicherheitsnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Stoffnorm</td>
<td>k. N. i.</td>
</tr>
<tr>
<td>Verständigungsnorm</td>
<td>k. N. i.</td>
</tr>
</tbody>
</table>

1 Je nach Art der Zweitnutzung ist eine gesonderte Prüfung des Normungsbedarfs erforderlich.

Für die nachfolgenden Darstellungen von Use Cases wird eine komprimierte Darstellung gewählt, in der nur noch das Diagramm und die abgeleiteten Normen je Aktivität (ohne Einzelschritte) aufgeführt werden. Die detaillierten Use Cases sind in einem separaten Dokument dargestellt.

Abb. 78 Use-Case-Hausenergiesysteme.

1 Besitz eines V2G-fähigen BEVs, eines angeschlossenen und vernetzten intelligenten Strom-Management-Haussystems (SMHS) und einer stromgenerierenden Anlage (PV, Wind, …) mit Überschusseinleispeisung

Aktivität: Authentifizierung an der Ladestation

<table>
<thead>
<tr>
<th>Gebrauchstauglichkeitsnorm</th>
<th>Ergonomische Funktionalität und Zuverlässigkeit der Ladestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maßnorm</td>
<td>Anschlüsse, Verbindungselemente, Vorrichtungen zur Erkennung von Identifizierungsdaten</td>
</tr>
<tr>
<td>Qualitätsnorm</td>
<td>Langzeitverhalten der technischen Komponenten und der Software (bei normaler und abnormaler Nutzung)</td>
</tr>
<tr>
<td>Sicherheitsnorm</td>
<td>Manipulationsresistenz, Datenschutz</td>
</tr>
<tr>
<td>Verständigungsnorm</td>
<td>Deklaration der Ladesäule, Funktionalität der Schnittstellen zwischen Kommunikationsmodul und Ladesäule</td>
</tr>
</tbody>
</table>

Aktivität: Persönliche Einstellungen am SMHS

<table>
<thead>
<tr>
<th>Sicherheitsnorm</th>
<th>Datenschutz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verständigungsnorm</td>
<td>Schnittstellen, Kommunikationsprotokolle, Datenformate</td>
</tr>
</tbody>
</table>

Aktivität: Datenaustausch (Batterie-, Lade-, Fahrzeugdaten)

<table>
<thead>
<tr>
<th>Maßnorm</th>
<th>Messung des Ladezustands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sicherheitsnorm</td>
<td>Datenschutz</td>
</tr>
<tr>
<td>Verständigungsnorm</td>
<td>Schnittstellen, Kommunikationsprotokolle, Datenformate</td>
</tr>
</tbody>
</table>

Aktivität: Laden/Entladen der Fahrzeugbatterie

<table>
<thead>
<tr>
<th>Maßnorm</th>
<th>Messung des Ladezustands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sicherheitsnorm</td>
<td>Manipulationsresistenz</td>
</tr>
<tr>
<td>Verständigungsnorm</td>
<td>Schnittstelle zwischen SMHS und Ladestation, Datenformate, Kommunikationsprotokolle</td>
</tr>
</tbody>
</table>

Aktivität: Fahrzeug – Netzbetreiber – Lieferant

| Verständigungsnorm | Schnittstellen, Kommunikationsprotokolle, Datenformate |
Elektromobilität – Normen bringen die Zukunft in Fahrt

Ableitung des Normungs- und Standardisierungsbedarfs

RFID-Karte

<table>
<thead>
<tr>
<th>Gebrauchstauglichkeitsnorm</th>
<th>Ergonomische Funktionalität und Zuverlässigkeit der interaktiven Systeme, barrierefreier Zugang, Gewährleistung der Kompatibilität zwischen Kommunikationsmodul und Ladesäule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liefernorm</td>
<td>Technische Lieferbedingungen von RFID-Lesegeräten, Ladestation</td>
</tr>
<tr>
<td>Maßnorm</td>
<td>Anschlüsse, Verbindungselemente, Vorrichtungen zur Erkennung von Identifizierungsdaten</td>
</tr>
<tr>
<td>Qualitätsnorm</td>
<td>Effizienz, Funktionalität, Verfügbarkeit und Korrektheit der Systeme, Langzeitverhalten der technischen Komponenten und der Software (bei normaler und abnormaler Nutzung)</td>
</tr>
<tr>
<td>Sicherheitsnorm</td>
<td>Manipulationsresistenz der technischen Geräte, Datenschutzbestimmungen bei der Verwaltung von Identitäten und Stammdaten</td>
</tr>
<tr>
<td>Verständigungsnorm</td>
<td>Kennzeichnung und Bedienungshinweise zu technischen Komponenten, Kommunikationsprotokolle</td>
</tr>
</tbody>
</table>

Abb. 79 Use-Case-Authentifizierung.

Ableitung des Normungs- und Standardisierungsbedarfs

<table>
<thead>
<tr>
<th>Normenart</th>
<th>Inhaltsbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gebrauchstauglichkeitsnorm</td>
<td>Ergonomische Anforderungen für interaktive Systeme, barrierefreier Zugang zu Systemen</td>
</tr>
<tr>
<td>Liefernorm</td>
<td>Technische Lieferbedingungen</td>
</tr>
<tr>
<td>Maßnorm</td>
<td>Anschlüsse, Verbindungselemente, Vorrichtungen zur Erkennung von Identifizierungsdaten</td>
</tr>
<tr>
<td>Qualitätsnorm</td>
<td>Effizienz, Funktionalität, Verfügbarkeit und Korrektheit der Systeme</td>
</tr>
<tr>
<td>Sicherheitsnorm</td>
<td>Manipulationsresistenz der technischen Geräte, Datenschutzbestimmungen bei der Verwaltung von Identitäten und Stammdaten</td>
</tr>
<tr>
<td>Verständigungsnorm</td>
<td>Kennzeichnung, Schnittstellen, Protokolle, Datenformate</td>
</tr>
</tbody>
</table>
Elektromobilität – Normen bringen die Zukunft in Fahrt

Aktivität: Dienstleisterauthentifizierung

<table>
<thead>
<tr>
<th>Sicherheitsnorm</th>
<th>Verschlüsselung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verständigungsnorm</td>
<td>Definition Schnittstelle, Protokoll, Datenformat</td>
</tr>
</tbody>
</table>

Aktivität: Zugriff auf Fahrzeugdaten

Kein Normungsbedarf identifiziert

Aktivität: Leistungsdatenaustausch (Batterie, Fahrzeug)

<table>
<thead>
<tr>
<th>Qualitätsnorm</th>
<th>Vollständigkeit der übertragenen Daten (Checksum o. Ä.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verständigungsnorm</td>
<td>Einheitliche Codierung der Fahrzeuginformationen (z. B. Verschlüsselung)</td>
</tr>
</tbody>
</table>

Aktivität: Information über Diagnoseergebnisse

Kein Normungsbedarf identifiziert

Abb. 80 Use-Case-Wartung mittels Ferndiagnose.
Abb. 81 Use-Case-Eigendiagnose Fahrzeug und Ladestation.

Aktivität: Vorbereiten und Starten des Ladevorgangs

Verständigungsverfahren: k. N. l.

Aktivität: Eigendiagnose Fahrzeug

- **Gebrauchstauglichkeitsnorm**: Wartung des Diagnoseinstruments
- **Verständigungsverfahren**: Definition Schnittstelle, Protokoll, Datenformat, Gestalt des Signals zur Funktionsstüchtigkeit im Fahrzeug

Aktivität: Eigendiagnose Ladestation

- **Gebrauchstauglichkeitsnorm**: Wartung des Diagnoseinstruments, Testvorrichtung für das Kabel (Übergangswiderstand, Kabelbruch)
- **Verständigungsverfahren**: Definition Schnittstelle, Protokoll, Datenformat, einheitliches Signal zur Funktionsstüchtigkeit an der Ladestation
Abb. 82 Use-Case-Rettungskette: Unfall mit Personenschaden.

<table>
<thead>
<tr>
<th>Aktivität: Notruf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verständigungsnorm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aktivität: Sichern der Unfallstelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sicherheitsnorm</td>
</tr>
<tr>
<td>Verständigungsnorm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aktivität: Ersthilfe (falls möglich)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kein Normungsbedarf identifiziert</td>
</tr>
</tbody>
</table>
Aktivität: Rettung der Verletzten

| Verständigungsnorm | Einheitliche Rettungsleitfäden für die Rettungskräfte |

Aktivität: Feststellen des Schadens

<table>
<thead>
<tr>
<th>Sicherheitsnorm</th>
<th>Schutz und Rettung von (persönlichen) Daten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verständigungsnorm</td>
<td>Einheitliche Leitfäden zur Vorgehensweise mit verunfalltem EV für den Abschleppdienst und die Werkstatt</td>
</tr>
</tbody>
</table>

Aktivität: Transport EV

| Sicherheitsnorm | Verfahren zum Entladen von Batterien; Sicherheit der Daten vor ungewolltem Zugriff |
Literaturverzeichnis

Elektromobilität – Normen bringen die Zukunft in Fahrt

Literaturverzeichnis

Literaturverzeichnis

PwC (2011): Charging forwards: Electric vehicle survey. USA.

Elektromobilität – Normen bringen die Zukunft in Fahrt

Literaturverzeichnis

Ableitung des mittel- bis langfristigen Normungs- und Standardisierungsbedarfs im Bereich Elektromobilität auf Basis der sozioökonomischen Entwicklung

Herausgegeben vom DIN Deutsches Institut für Normung e.V.

Verantwortlich:
DIN Deutsches Institut für Normung e.V. (DIN)
Mario Beier
Am DIN-Platz
Burggrafenstraße 6
10787 Berlin

Durchgeführt von:
PricewaterhouseCoopers AG Wirtschaftsprüfungsgesellschaft
Friedrich-Ebert-Anlage 35–37
60327 Frankfurt am Main

Unter Mitarbeit von:
Fachhochschule Frankfurt am Main – University of Applied Sciences
Nibelungenplatz 1
60318 Frankfurt am Main

Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF
Bartningstr. 47
64289 Darmstadt

Autoren:
Dr. Georg A. Teichmann (PwC)
Jan Trützschler (PwC)
Christian Hahn (PwC)
Prof. Dr.-Ing. Petra K. Schäfer (FH FFM)
Alexander Hermann (FH FFM)
Klaus Höhne (Fraunhofer LBF)

Finanzierung:
Diese Studie wurde durch das Bundesministerium für Wirtschaft und Technologie aufgrund eines Beschlusses des Deutschen Bundestages mit Mitteln aus dem Konjunkturprogramm II finanziert.

Über uns

Unsere Mandanten stehen tagtäglich vor vielfältigen Aufgaben, möchten neue Ideen umsetzen und suchen Rat. Sie erwarten, dass wir sie ganzheitlich betreuen und praxisorientierte Lösungen mit großem Nutzen entwickeln. Deshalb setzen wir für jeden Mandanten, ob Global Player, Familienunternehmen oder kommunaler Träger, unser gesamtes Potenzial ein: Erfahrung, Branchenkenntnis, Fachwissen, Qualitätsanspruch, Innovationskraft und die Ressourcen unseres Expertennetzes in über 158 Ländern. Besonders wichtig ist uns die vertrauensvolle Zusammenarbeit mit unseren Mandanten, denn je besser wir sie kennen und verstehen, umso gezielter können wir sie unterstützen.

Elektromobilität als Verknüpfung von Kompetenzen und Ressourcen aus Automotive, Energy Consulting und der Öffentlichen Hand

Fachhochschule Frankfurt am Main – University of Applied Sciences

Prof. Dr.-Ing. Petra K. Schäfer
Tel.: +49 69 1533-2797
petra.schaefer@fb1.fh-frankfurt.de

Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Klaus Höhne
Tel.: +49 6151 705-8278
klaus.hoehne@lbf.fraunhofer.de

DIN Deutsches Institut für Normung e. V.

Mario Beier
Tel.: +49 30 2601-2194
mario.beier@din.de