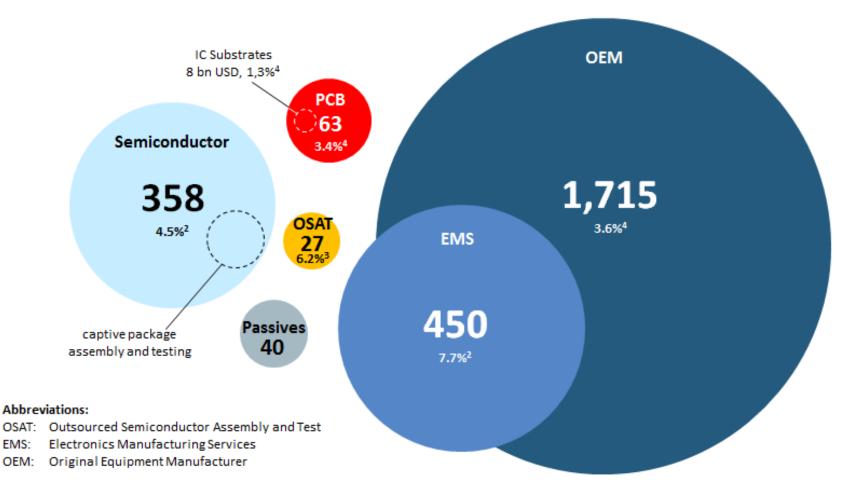


F&E-FAHRPLAN ELEKTRISCHE UND ELEKTRONISCHE KOMPONENTEN


MARKUS LEITGEB, AT&S AUSTRIA TECHNOLOGIE & SYSTEMTECHNIK AG

SCTENCE BRUNCH

Ecosystem Elektronikindustrie

www.klimafonds.gv.at

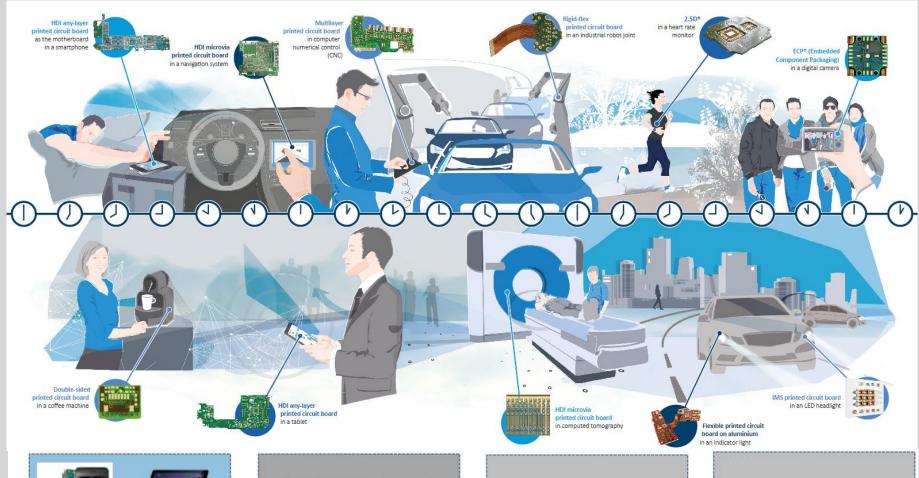
Source: Prismark 2015, Gartner 2015, Technavio 2015, New Venture Research 2014, Strategy& analysis

1) Area representing market size, figures from 2014 and 2015 2) growth ('13-'18) 3) growth ('13-'17) 4) growth ('14-'19)

SCTENCE BRUNCH

AT&S Strategie - Positionierung

www.klimafonds.gv.at


Markt Position HDI Technologie						
			Umsatz (in USD Mio.)			
Rang	Land	Lieferant	HDI	Andere Technologie	IC-Substrate	Gesamt- umsatz
1	TWN	Unimicron	682	671	795	2.148
2	TWN	Compeq	538	509	-	1.047
3	AUT	AT&S	530	248	-	778
4	KOR .	SEMCO	480	173	1.212	1.865
5	JPN 🛑	Ibiden	426	-	1.080	1.506
6	USA	πм	406	962	-	1.368
7	TWN	Zhen Ding	343	1.774	-	2.117
8	TWN	Tripod	305	1.077	-	1.382
9	KOR .	DAP	279	21	-	300
10	TWN	Unitech	236	304	-	540

Quelle: Prismark, August 2014; NTI CY2013; AT&SStrategy

1 Tag mit AT&S

SCTENCE BRUNCH

www.klimafonds.gv.at

#1 Thermal Management von Leiterplatten

Kontinuierliche Material-Grundlagenforschung bis hin zur Entwicklung neuer Design-Konzepte und – Möglichkeiten. Ziel ist optimale Verteilung und Transport von Wärme auf Leiterplatten, um Überhitzungen zu vermeiden.

EE-Potential

Auf indirekter Ebene 5–10%.

#2 Leiterplattentechnologie für Hochfrequenzanwendungen

Einsatz von Schäumen in der Leiterplatte sowie Weiterentwicklung von Filterdesigns. Ziel ist, die optimale Signalverarbeitung zu gewährleisten, um unterschiedliche Frequenzbereiche mit derselben Schaltung zu realisieren.

EE-Potential

Auf Komponentenebene 5–10%, auf Systemebene bis zu 5%.

#3 Embedding Technologie

Weiterentwicklung der Embedding Technologie für neue Anwendungen. Ziel ist die Reduktion der Größe der Komponenten, um Platz zu sparen sowie Zuverlässigkeit zu erhöhen.

EE-Potential

Auf Komponentenebene mehr als 30%, auf Systemebene 5-10%.

#4 Energieeffiziente Halbleiterkomponenten

Weiterentwicklung von Halbleiterkomponenten in neuen Systemen. Fokus: Anwendungen im Bereich Heizung/Lüftung/Klimatechnik und Beleuchtung.

EE-Potential

Auf Komponentenebene bis zu 5%, auf Systemebene 20–30%.

#5 Effizienzverbesserung bei Schaltnetzteilen

Entwicklung von neuen, alternativen Konzepten mit besserem Wirkungsgrad und geringeren Bauteilkosten.

EE-Potential

Auf Komponentenebene 5–10%.

#6 Elektrische (lagerlose) Motoren

Weiterentwicklung der Technologie für Ventilatormotoren, Motoren für Industriemaschinen, E-Bikes oder KFZs.

EE-Potential

Auf Komponentenebene 10–15%.

#7

Energieautarke Sensoren

Entwicklung von energieautarken elektromechanischen Sensoren auf Basis von ferroelektrischen Materialien sowie von gedruckten und großflächigen Dünnfilmsensoren.

EE-Potential

Auf Komponentenebene 20–30%, auf Systemebene 5–10%.

#8

Smarte (Stand-by-Funktionen), energieautarke Systeme

Weiterentwicklung von Komponenten und Materialien für energieeffiziente (Stand-by) Systeme, Energiespeicher und Energy Harvesting für (Stand-by) Systeme.

EE-Potential

Nicht quantifiziert.

#9 Energieeffiziente Herstellung von Komponenten aus Elektrokeramik

i

-Steigerung der Energieeffizienz der Herstellung pro Bauelement mittels verbesserter Materialien.

EE-Potential

Nicht quantifiziert.

#10 | Sharing Economy

i

Weiterentwicklung des Konzepts der Sharing Economy. Förderung neuer Geschäftsmodelle, sozialer Innovationen und Dienstleistungsinnovationen.

EE-Potential

Nicht quantifiziert.

#11 Passive Bauelemente für energieeffiziente Leistungselektronik

i

Neue Materialien für Leistungskomponenten, Design- und Verbindungstechnik für die Miniaturisierung und Integration sowie Prozesse und Verfahren zur effizienten Herstellung von passiven Elementen.

EE-Potential

Nicht quantifiziert.

#12

Neue Halbleitermaterialien und Transistortypen (Bioelektronik)

i

--Halbleiter auf Basis natürlicher und biokompatibler Farbstoffe, Bioelektronik, abbaubare Substrate und Materialien, implantierbare Elektronik.

EE-Potential

Auf Komponentenebene 20-30%, auf Systemebene 5-10 %.

#13

Weiterentwicklung im Bereich Medizinanwendungen

A

-Entwicklung von spezifischen Leiterplatten für medizinische Anwendungen sowie Entwicklung der Integration von biokompatiblen Materialien in Leiterplatten. Weiterentwicklung und Einsatz von Drucktechnologie für Sensoranwendungen.

EE-Potential

Nicht quantifiziert.

Anforderungen an FTI-politische Instrumente

Förderung & Finanzierung

- Verkürzung der Zeitspanne von der Fördereinreichung bis zur Förderzusage.
- Vereinfachung von europäischen und internationalen Fördereinreichungen.
- Effiziente und fachlich versierte Unterstützung bei der Konsortienbildung.
- Ausfinanzierungshürde 10% bis max. 20%.

Forschungsinfrastruktur

 Derzeit keine Forschungseinrichtung in Österreich, durch welche die gesamte elektronische Wertschöpfungskette abgedeckt wird. Notwendig, um zukünftige Herausforderungen (z.B. Co-Designs für Smart Electronic Systems) bewältigen zu können.

Marktnachfrage

Eine stärkere öffentliche Projektbeteiligung (vor allem von Gemeinden) ist notwendig.
 Ziel: Festigung der erarbeiteten Forschungsergebnisse.

Humanressourcen

Attraktiveren der technischen Studien. Schaffung der Möglichkeit einer "Ausbildung zum Forscher".